L. Crocco, F. Cuomo, and T. Isernia, "An improved scattering matrix method for the analysis of two-dimensional PBG devices," Microwave Opt. Technol. Lett. 48, 2564-2570 (2006).

[CrossRef]

A. G. Kyurkchan and S. A. Minaev, "Using of the wavelet technique for the solution of the wave diffraction problem," J. Quant. Spectrosc. Radiat. Transf. 89, 219-236 (2004).

[CrossRef]

G. Fairweather, A. Karageorghis, and P. A. Martin, "The method of fundamental solutions for scattering and radiation problems," Eng. Analysis Boundary Elements 27, 759-769 (2003).

[CrossRef]

D. I. Kaklamani and H. T. Anastassiu, "Aspects of the method of auxiliary sources (MAS) in computational electromagnetics," IEEE Trans. Antennas Propag. 44, 48-64 (2002).

O. M. Bucci, L. Crocco, and T. Isernia, "Improving the reconstruction capabilities in inverse scattering problems by exploitation of close-proximity setups," J. Opt. Soc. Am. A 16, 1788-1798 (1999).

[CrossRef]

J. Yonekura, M. Ikeda, and T. Baba, "Analysis of finite 2D photonic crystals of columns and lightwave devices using the scattering matrix method," J. Lightwave Technol. 17, 1500-1508 (1999).

[CrossRef]

O. M. Bucci, C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Trans. Antennas Propag. 46, 351-359 (1998).

[CrossRef]

G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 11, 3323-3332 (1997).

[CrossRef]

O. M. Bucci and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propag. 37, 918-926 (1989).

[CrossRef]

R. Penrose, "The role of aesthetics in pure and applied mathematical research," Bull. Inst. Math. Appl. 10, 266-271 (1974).

M. Abramovitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1970).

M. A. Aleksidze, Fundamental Functions in Approximate Solutions to Boundary Value Problems (Nauka, 1991).

D. I. Kaklamani and H. T. Anastassiu, "Aspects of the method of auxiliary sources (MAS) in computational electromagnetics," IEEE Trans. Antennas Propag. 44, 48-64 (2002).

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).

[CrossRef]

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).

[CrossRef]

O. M. Bucci, L. Crocco, and T. Isernia, "Improving the reconstruction capabilities in inverse scattering problems by exploitation of close-proximity setups," J. Opt. Soc. Am. A 16, 1788-1798 (1999).

[CrossRef]

O. M. Bucci, C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Trans. Antennas Propag. 46, 351-359 (1998).

[CrossRef]

O. M. Bucci and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propag. 37, 918-926 (1989).

[CrossRef]

L. Crocco, F. Cuomo, and T. Isernia, "An improved scattering matrix method for the analysis of two-dimensional PBG devices," Microwave Opt. Technol. Lett. 48, 2564-2570 (2006).

[CrossRef]

O. M. Bucci, L. Crocco, and T. Isernia, "Improving the reconstruction capabilities in inverse scattering problems by exploitation of close-proximity setups," J. Opt. Soc. Am. A 16, 1788-1798 (1999).

[CrossRef]

L. Crocco, F. Cuomo, and T. Isernia, "An improved scattering matrix method for the analysis of two-dimensional PBG devices," Microwave Opt. Technol. Lett. 48, 2564-2570 (2006).

[CrossRef]

G. Fairweather, A. Karageorghis, and P. A. Martin, "The method of fundamental solutions for scattering and radiation problems," Eng. Analysis Boundary Elements 27, 759-769 (2003).

[CrossRef]

O. M. Bucci and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propag. 37, 918-926 (1989).

[CrossRef]

O. M. Bucci, C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Trans. Antennas Propag. 46, 351-359 (1998).

[CrossRef]

M. Qiu and S. He, "Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions," Phys. Rev. B 61, 12871-12876 (2000).

[CrossRef]

L. Crocco, F. Cuomo, and T. Isernia, "An improved scattering matrix method for the analysis of two-dimensional PBG devices," Microwave Opt. Technol. Lett. 48, 2564-2570 (2006).

[CrossRef]

O. M. Bucci, L. Crocco, and T. Isernia, "Improving the reconstruction capabilities in inverse scattering problems by exploitation of close-proximity setups," J. Opt. Soc. Am. A 16, 1788-1798 (1999).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

D. I. Kaklamani and H. T. Anastassiu, "Aspects of the method of auxiliary sources (MAS) in computational electromagnetics," IEEE Trans. Antennas Propag. 44, 48-64 (2002).

G. Fairweather, A. Karageorghis, and P. A. Martin, "The method of fundamental solutions for scattering and radiation problems," Eng. Analysis Boundary Elements 27, 759-769 (2003).

[CrossRef]

R. S. Zaridze, D. D. Karkashadze, G. M. Khatiashvili, and Z. S. Tsverikmazashvili, "The method of auxiliary sources in applied electrodynamics," in Proceedings of the URSI International Symposium on Electromagnetic Theory (Budapest, 1986), pp. 104-106.

R. S. Zaridze, D. D. Karkashadze, G. M. Khatiashvili, and Z. S. Tsverikmazashvili, "The method of auxiliary sources in applied electrodynamics," in Proceedings of the URSI International Symposium on Electromagnetic Theory (Budapest, 1986), pp. 104-106.

A. G. Kyurkchan and S. A. Minaev, "Using of the wavelet technique for the solution of the wave diffraction problem," J. Quant. Spectrosc. Radiat. Transf. 89, 219-236 (2004).

[CrossRef]

G. Fairweather, A. Karageorghis, and P. A. Martin, "The method of fundamental solutions for scattering and radiation problems," Eng. Analysis Boundary Elements 27, 759-769 (2003).

[CrossRef]

G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 11, 3323-3332 (1997).

[CrossRef]

D. Felbacq, G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A 11, 2526-2538 (1994).

[CrossRef]

D. Maystre, M. Saillard, and G. Tayeb, "Special methods of wave diffraction," in Scattering, P.Sabatier and E.R.Pike, eds. (Academic, 2001).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

A. G. Kyurkchan and S. A. Minaev, "Using of the wavelet technique for the solution of the wave diffraction problem," J. Quant. Spectrosc. Radiat. Transf. 89, 219-236 (2004).

[CrossRef]

R. Penrose, "The role of aesthetics in pure and applied mathematical research," Bull. Inst. Math. Appl. 10, 266-271 (1974).

M. Qiu and S. He, "Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions," Phys. Rev. B 61, 12871-12876 (2000).

[CrossRef]

D. Maystre, M. Saillard, and G. Tayeb, "Special methods of wave diffraction," in Scattering, P.Sabatier and E.R.Pike, eds. (Academic, 2001).

O. M. Bucci, C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Trans. Antennas Propag. 46, 351-359 (1998).

[CrossRef]

M. Abramovitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1970).

G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 11, 3323-3332 (1997).

[CrossRef]

D. Felbacq, G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A 11, 2526-2538 (1994).

[CrossRef]

D. Maystre, M. Saillard, and G. Tayeb, "Special methods of wave diffraction," in Scattering, P.Sabatier and E.R.Pike, eds. (Academic, 2001).

R. S. Zaridze, D. D. Karkashadze, G. M. Khatiashvili, and Z. S. Tsverikmazashvili, "The method of auxiliary sources in applied electrodynamics," in Proceedings of the URSI International Symposium on Electromagnetic Theory (Budapest, 1986), pp. 104-106.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

R. S. Zaridze, D. D. Karkashadze, G. M. Khatiashvili, and Z. S. Tsverikmazashvili, "The method of auxiliary sources in applied electrodynamics," in Proceedings of the URSI International Symposium on Electromagnetic Theory (Budapest, 1986), pp. 104-106.

R. Penrose, "The role of aesthetics in pure and applied mathematical research," Bull. Inst. Math. Appl. 10, 266-271 (1974).

G. Fairweather, A. Karageorghis, and P. A. Martin, "The method of fundamental solutions for scattering and radiation problems," Eng. Analysis Boundary Elements 27, 759-769 (2003).

[CrossRef]

O. M. Bucci and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propag. 37, 918-926 (1989).

[CrossRef]

O. M. Bucci, C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Trans. Antennas Propag. 46, 351-359 (1998).

[CrossRef]

D. I. Kaklamani and H. T. Anastassiu, "Aspects of the method of auxiliary sources (MAS) in computational electromagnetics," IEEE Trans. Antennas Propag. 44, 48-64 (2002).

M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol. 18, 1402-1411 (2000).

[CrossRef]

J. Yonekura, M. Ikeda, and T. Baba, "Analysis of finite 2D photonic crystals of columns and lightwave devices using the scattering matrix method," J. Lightwave Technol. 17, 1500-1508 (1999).

[CrossRef]

D. Felbacq, G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A 11, 2526-2538 (1994).

[CrossRef]

G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 11, 3323-3332 (1997).

[CrossRef]

O. M. Bucci, L. Crocco, and T. Isernia, "Improving the reconstruction capabilities in inverse scattering problems by exploitation of close-proximity setups," J. Opt. Soc. Am. A 16, 1788-1798 (1999).

[CrossRef]

A. G. Kyurkchan and S. A. Minaev, "Using of the wavelet technique for the solution of the wave diffraction problem," J. Quant. Spectrosc. Radiat. Transf. 89, 219-236 (2004).

[CrossRef]

L. Crocco, F. Cuomo, and T. Isernia, "An improved scattering matrix method for the analysis of two-dimensional PBG devices," Microwave Opt. Technol. Lett. 48, 2564-2570 (2006).

[CrossRef]

M. Qiu and S. He, "Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions," Phys. Rev. B 61, 12871-12876 (2000).

[CrossRef]

R. S. Zaridze, D. D. Karkashadze, G. M. Khatiashvili, and Z. S. Tsverikmazashvili, "The method of auxiliary sources in applied electrodynamics," in Proceedings of the URSI International Symposium on Electromagnetic Theory (Budapest, 1986), pp. 104-106.

D. Maystre, M. Saillard, and G. Tayeb, "Special methods of wave diffraction," in Scattering, P.Sabatier and E.R.Pike, eds. (Academic, 2001).

M. Abramovitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1970).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).

[CrossRef]

M. A. Aleksidze, Fundamental Functions in Approximate Solutions to Boundary Value Problems (Nauka, 1991).