Abstract

The enhancement and confinement characteristics of the local field in the two-dimensional (2D) subwavelength-size series cavities structure are investigated numerically by using the boundary integral method. The series cavities are built of two pieces of finite silver thin slabs with subwavelength corrugations on their inner boundaries, set in a face-to-face arrangement with a separating space, and the central part is a narrow channel (NC). We calculate the average amplitude of the local field in the NC as a function of the wavelength for exploring the influence of the structural parameters and demonstrate the amplitude distribution of the magnetic field in the structure and the cross-section distributions of the local field in the NC region along both the longitudinal axis direction and the transverse directions. The simulations show that the local field in the NC has significant enhancement, up to 2 orders of magnitude, of the incident light field, and the local light field is confined to a small region less than one fifth of the resonant wavelength in the longitudinal direction and one twentieth of the resonant wavelength in the lateral direction. Replacing the metallic material of the cavity walls with the semiconductor germanium leads to the complete disappearance of the enhancement of the local field. It is clearly shown that surface plasmon polaritons on the metal play a critical role for this enhancement phenomenon. The influences of various geometric parameters on the resonant wavelength and the peak value of the average amplitude of the local field are extensively investigated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, "Plasmonics--towards subwavelength optical devices," Curr. Nanosci. 1, 17-23 (2005).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmons subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  3. J. P. Kottmann and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
    [CrossRef]
  4. C. Rockstuhl, M. G. Salt, and H. P. Herzig, "Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles," J. Opt. Soc. Am. A 20, 1969-1973 (2003).
    [CrossRef]
  5. R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 106, 874-881 (1957).
    [CrossRef]
  6. C. J. Powell and J. B. Swan, "Effect of oxidation on the characteristic loss spectra of aluminum and magnesium," Phys. Rev. 118, 640-643 (1960).
    [CrossRef]
  7. T. W. Ebbesen, H. F. Lezec, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
    [CrossRef] [PubMed]
  10. T.-W. Lee and S. K. Gray, "Subwavelength light bending by metal slit structures," Opt. Express 13, 9652-9659 (2005).
    [CrossRef] [PubMed]
  11. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
    [CrossRef]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  13. M.-Y. Ng and W.-C. Liu, "Local-field confinement in three-pair arrays of metallic nanocylinders," Opt. Express 14, 4504-4513 (2006).
    [CrossRef] [PubMed]
  14. E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, "A virtual optical probe based on localized surface plasmon polaritons," Opt. Express 13, 7017-7027 (2005).
    [CrossRef] [PubMed]
  15. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  16. L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
    [CrossRef]
  17. N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics (Artech House, 1991).
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  19. J. Lindberg, K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, "Spectral analysis of resonant transmission of light through a single sub-wavelength slit," Opt. Express 12, 623-632 (2004).
    [CrossRef] [PubMed]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

M.-Y. Ng and W.-C. Liu, "Local-field confinement in three-pair arrays of metallic nanocylinders," Opt. Express 14, 4504-4513 (2006).
[CrossRef] [PubMed]

2005 (4)

E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig, "A virtual optical probe based on localized surface plasmon polaritons," Opt. Express 13, 7017-7027 (2005).
[CrossRef] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

T.-W. Lee and S. K. Gray, "Subwavelength light bending by metal slit structures," Opt. Express 13, 9652-9659 (2005).
[CrossRef] [PubMed]

S. A. Maier, "Plasmonics--towards subwavelength optical devices," Curr. Nanosci. 1, 17-23 (2005).
[CrossRef]

2004 (1)

2003 (2)

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

2001 (2)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

J. P. Kottmann and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

2000 (1)

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. F. Lezec, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1960 (1)

C. J. Powell and J. B. Swan, "Effect of oxidation on the characteristic loss spectra of aluminum and magnesium," Phys. Rev. 118, 640-643 (1960).
[CrossRef]

1957 (1)

R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 106, 874-881 (1957).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmons subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Capasso, F.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Chang, Y.-C.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Chen, Y.-C.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Cho, A. Y.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmons subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Descrovi, E.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmons subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. F. Lezec, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Friberg, A. T.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Gmachl, C.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Gray, S. K.

Herzig, H. P.

Herzig, H.-P.

Huang, K.-T.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Hutchinson, A. L.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Kaivola, M.

Kottmann, J. P.

J. P. Kottmann and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Kumagai, N.

N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics (Artech House, 1991).

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Lee, C.-K.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Lee, T.-W.

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Lezec, H. F.

T. W. Ebbesen, H. F. Lezec, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Liaw, J.-W.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Lin, D.-Z.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Lindberg, J.

Lindfors, K.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Liu, J.-M.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Liu, W.-C.

Maier, S. A.

S. A. Maier, "Plasmonics--towards subwavelength optical devices," Curr. Nanosci. 1, 17-23 (2005).
[CrossRef]

Martin, O. J. F.

J. P. Kottmann and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Mautz, J. R.

N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics (Artech House, 1991).

Morita, N.

N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics (Artech House, 1991).

Ng, M.-Y.

Paeder, V.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Powell, C. J.

C. J. Powell and J. B. Swan, "Effect of oxidation on the characteristic loss spectra of aluminum and magnesium," Phys. Rev. 118, 640-643 (1960).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Ritchie, R. H.

R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 106, 874-881 (1957).
[CrossRef]

Rockstuhl, C.

Salt, M. G.

Setälä, T.

Sivco, D. L.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Swan, J. B.

C. J. Powell and J. B. Swan, "Effect of oxidation on the characteristic loss spectra of aluminum and magnesium," Phys. Rev. 118, 640-643 (1960).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. F. Lezec, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Tredicucci, A.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Vaccaro, L.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. F. Lezec, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Yeh, C.-S.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Yeh, J.-T.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Yu, L.-B.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Curr. Nanosci. (1)

S. A. Maier, "Plasmonics--towards subwavelength optical devices," Curr. Nanosci. 1, 17-23 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmons subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. F. Lezec, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. (2)

R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 106, 874-881 (1957).
[CrossRef]

C. J. Powell and J. B. Swan, "Effect of oxidation on the characteristic loss spectra of aluminum and magnesium," Phys. Rev. 118, 640-643 (1960).
[CrossRef]

Phys. Rev. B (2)

J. P. Kottmann and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405/1-4 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other (3)

N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics (Artech House, 1991).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic view of the 2D subwavelength-size structure, which consists of two pieces of finite silver thin slabs with subwavelength corrugations on their inner boundaries, set in a face-to-face arrangement and forming a series of cavities. The center part of the structure is a NC with width d and length l. The profile of the boundary walls of the cavities on the left-hand and right-hand side of the NC is described with a sinusoidal function with period p and amplitude a. N denotes the number of the periodic corrugations.

Fig. 2
Fig. 2

Variations of the average amplitude of the local field in the NC as a function of the wavelength for the structure with parameters N = 2 , p = l = 200 nm , h = 360 nm , a = 60 nm , and d = 40 nm .

Fig. 3
Fig. 3

Average amplitude distribution of magnetic field in the NC at resonant wavelength λ r = 827 nm . (a) Gray-level plot. The bright (dark) area corresponds to large (small) values; (b) the longitudinal cross-section distribution of the local field along the x axis (fixed y = h + d 2 = 380 nm ); (c) the transverse cross-section distribution along the y axis (fixed x = 0 nm ). The two vertical dashed lines in (b) mark the FWHM; the two vertical dotted lines in (c) indicate the lateral position of the NC.

Fig. 4
Fig. 4

Same as Fig. 3a except that silver is replaced by germanium in the structure.

Fig. 5
Fig. 5

Same as Fig. 2 except for changing N = 1 , 2 , 3 , 4 .

Fig. 6
Fig. 6

Same as Fig. 2 except for changing l = 150 , 200, 250, 300 nm .

Fig. 7
Fig. 7

Same as Fig. 2 except for changing p = l = 100 nm , p = l = 200 nm , and p = l = 300 nm .

Fig. 8
Fig. 8

Same as Fig. 2 except for changing d = 20 , 40, 70, 100 nm .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k sp = k 0 ε d ε m ε d + ε m ,
k sp = k 0 sin θ 0 ± m ( 2 π p ) ,
ε d ε m ε d + ε m = 1 ± m λ 0 p .
H z ( r 1 , 2 ) = Γ 1 ( Γ 2 ) [ G 1 ( 2 ) ( r 1 ( 2 ) , r Γ ) H z ( r Γ ) n 1 ( 2 ) H z ( r Γ ) G 1 ( 2 ) ( r 1 ( 2 ) , r Γ ) n 1 ( 2 ) ] d l ,
r 1 ( 2 ) region 1 ( 2 )
H z ( r 3 ) = Γ 1 + Γ 2 [ G 3 ( r 3 , r Γ ) H z ( r Γ ) n 3 H z ( r Γ ) G 3 ( r 3 , r Γ ) n 3 ] d l + H z inc ,
r 3 region 3 ,
A av = 1 l l 2 l 2 H z ( x ) d x .

Metrics