Abstract

There are 8cycledeg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180° out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broadband signals. The ripples disappear with step maskers and become much smaller at durations below 25ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Mach, "Über die Wirkung der raumlichen Verteilung des Lichtreizes auf die Netzhaut," in Mach Bands: Quantitative Studies on Neural Networks in the Retina, F.Ratliff, ed. (Holden-Day, 1965).
  2. F. Ratliff, ed. in Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, 1965).
  3. G. B. Henning, R. W. Millar, and N. J. Hill, "Detection of incremental and decremental bars at different locations across Mach bands and related stimuli," J. Opt. Soc. Am. A 171147-1159 (2001).
    [CrossRef]
  4. G. B Henning, K. T. Hoddinott, Z. J. Wilson-Smith, and N. J. Hill, "Masking effect produced by Mach bands on the detection of narrow bars of random polarity," J. Opt. Soc. Am. A 211379-1387 (2004).
    [CrossRef]
  5. A. Fiorentini, M. Jeanne, and G. M. Toraldo di Francia, "Mésures photometrique visuelles sur un champ à gradient d'éclairement variable," Opt. Acta 10, 209-216 (1955).
  6. F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling and goodness-of-fit," Percept. Psychophys. 63, 1293-1313 (2001).
    [CrossRef]
  7. F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
    [CrossRef]
  8. F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. (London) 197, 551-566 (1968).
  9. C. Blakemore and F. W. Campbell, "On the existence of neurons in the human visual system selective to the orientation and size of retinal images," J. Physiol. (London) 203, 237-260 (1969).
  10. U. Greis and R. Röhler, "Untersuchungen der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung," Opt. Acta 17, 515-526 (1970).
    [CrossRef]
  11. B. E. Carter and G. B. Henning, "The detection of gratings in narrow-band visual noise," J. Physiol. (London) 219, 355-365 (1971).
  12. C. F. Stromeyer III, and B. Julesz, "Spatial-frequency masking in vision: critical bands and the spread of masking," J. Opt. Soc. Am. 62, 1221-1232 (1972).
    [CrossRef] [PubMed]
  13. G. B. Henning, B. G. Hertz, and J. L. Hinton, "Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments: I. Noise masks," J. Opt. Soc. Am. 71, 574-581 (1981).
    [CrossRef] [PubMed]
  14. R. L. DeValois and K. K. DeValois, Spatial Vision (Oxford U. Press, 1988).
  15. D. B. Hamilton, D, G. Albrecht, and W., S. Geisler, "Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer functions," Vision Res. 29, 1285-1308 (1989).
    [CrossRef] [PubMed]
  16. N. van S. Graham, Visual Pattern Analyzers (Oxford U. Press, 1989).
    [CrossRef]
  17. D. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
    [CrossRef] [PubMed]
  18. S. Novak and G. Sperling "Visual thresholds near a continuously visible or a briefly presented light-dark boundary," J. Opt. Soc. Am. 53, 1-5 (1963).
  19. G. B. Henning, "Spatial-frequency tuning as a function of temporal frequency and stimulus motion," J. Opt. Soc. Am. A 5, 1362-1373 (1988).
    [CrossRef] [PubMed]
  20. G. B. Henning, A. M. Derington, and B. C. Madden, "Detectability of several ideal patterns," J. Opt. Soc. Am. 73, 851-854 (1983).
    [CrossRef] [PubMed]
  21. A. Papoulos, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).
  22. G. B. Henning, "Masking effect of low-frequency sinusoidal gratings on the detection of contrast modulation in high-frequency carriers," J. Opt. Soc. Am. A 21, 486-490 (2004).
    [CrossRef]
  23. R. W. Guillery and S. M. Sherman, "Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system," Neuron 33, 163-175 (2002).
    [CrossRef] [PubMed]
  24. G. Sperling and Z.-L. Lu, "Unequal representation of black and white in human vision," Invest. Ophthalmol. Visual Sci. 40, S200 (1999).
  25. L. C. Sincich and J. C. Horton, "The circuitry of V1 and V2: integration of color, form, and motion," Annu. Rev. Neurosci. 28, 303-326 (2005).
    [CrossRef] [PubMed]
  26. D. G. Albrecht, W. S. Geisler, R. A. Frazor, and A. M. Crane, "Visual cortex of monkeys and cats: temporal dynamics of the contrast reponse function," J. Neurophysiol. 88, 888-913 (2002).
    [PubMed]
  27. D. L. Ringach, M. J. Hawken, and R. M. Shapley, "Dynamics of orientation tuning in macaque primary visual cortex," Nature 387, 281-283 (1997).
    [CrossRef] [PubMed]
  28. C. E. Bredfeldt and D. L. Ringach, "Dynamics of spatial frequency tuning in macaque V1," J. Neurosci. 22, 1976-1984 (2002).
    [PubMed]
  29. D. L. Ringach, C. E. Bredfeldt, R. M. Shapley, and M. J. Hawken, "Supperssion of neural responses to non-optimal stimuli correlates with selectivity in macaque V1," J. Neurophysiol. 87, 1018-1027 (2002).
    [PubMed]
  30. D. Xing, D. L. Ringach, R. M. Shapley, and M. J. Hawken, "Correlation of local and global orientation and spatial frequency in Macaque V1," J. Physiol. (London) 557, 923-933 (2004).
    [CrossRef]

2005 (1)

L. C. Sincich and J. C. Horton, "The circuitry of V1 and V2: integration of color, form, and motion," Annu. Rev. Neurosci. 28, 303-326 (2005).
[CrossRef] [PubMed]

2004 (3)

2002 (4)

R. W. Guillery and S. M. Sherman, "Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system," Neuron 33, 163-175 (2002).
[CrossRef] [PubMed]

D. G. Albrecht, W. S. Geisler, R. A. Frazor, and A. M. Crane, "Visual cortex of monkeys and cats: temporal dynamics of the contrast reponse function," J. Neurophysiol. 88, 888-913 (2002).
[PubMed]

C. E. Bredfeldt and D. L. Ringach, "Dynamics of spatial frequency tuning in macaque V1," J. Neurosci. 22, 1976-1984 (2002).
[PubMed]

D. L. Ringach, C. E. Bredfeldt, R. M. Shapley, and M. J. Hawken, "Supperssion of neural responses to non-optimal stimuli correlates with selectivity in macaque V1," J. Neurophysiol. 87, 1018-1027 (2002).
[PubMed]

2001 (3)

F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling and goodness-of-fit," Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

G. B. Henning, R. W. Millar, and N. J. Hill, "Detection of incremental and decremental bars at different locations across Mach bands and related stimuli," J. Opt. Soc. Am. A 171147-1159 (2001).
[CrossRef]

1999 (1)

G. Sperling and Z.-L. Lu, "Unequal representation of black and white in human vision," Invest. Ophthalmol. Visual Sci. 40, S200 (1999).

1997 (1)

D. L. Ringach, M. J. Hawken, and R. M. Shapley, "Dynamics of orientation tuning in macaque primary visual cortex," Nature 387, 281-283 (1997).
[CrossRef] [PubMed]

1991 (1)

D. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

1989 (1)

D. B. Hamilton, D, G. Albrecht, and W., S. Geisler, "Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer functions," Vision Res. 29, 1285-1308 (1989).
[CrossRef] [PubMed]

1988 (1)

1983 (1)

1981 (1)

1972 (1)

1971 (1)

B. E. Carter and G. B. Henning, "The detection of gratings in narrow-band visual noise," J. Physiol. (London) 219, 355-365 (1971).

1970 (1)

U. Greis and R. Röhler, "Untersuchungen der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung," Opt. Acta 17, 515-526 (1970).
[CrossRef]

1969 (1)

C. Blakemore and F. W. Campbell, "On the existence of neurons in the human visual system selective to the orientation and size of retinal images," J. Physiol. (London) 203, 237-260 (1969).

1968 (1)

F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. (London) 197, 551-566 (1968).

1963 (1)

1955 (1)

A. Fiorentini, M. Jeanne, and G. M. Toraldo di Francia, "Mésures photometrique visuelles sur un champ à gradient d'éclairement variable," Opt. Acta 10, 209-216 (1955).

Albrecht, D G.

D. B. Hamilton, D, G. Albrecht, and W., S. Geisler, "Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer functions," Vision Res. 29, 1285-1308 (1989).
[CrossRef] [PubMed]

Albrecht, D. G.

D. G. Albrecht, W. S. Geisler, R. A. Frazor, and A. M. Crane, "Visual cortex of monkeys and cats: temporal dynamics of the contrast reponse function," J. Neurophysiol. 88, 888-913 (2002).
[PubMed]

Blakemore, C.

C. Blakemore and F. W. Campbell, "On the existence of neurons in the human visual system selective to the orientation and size of retinal images," J. Physiol. (London) 203, 237-260 (1969).

Bredfeldt, C. E.

C. E. Bredfeldt and D. L. Ringach, "Dynamics of spatial frequency tuning in macaque V1," J. Neurosci. 22, 1976-1984 (2002).
[PubMed]

D. L. Ringach, C. E. Bredfeldt, R. M. Shapley, and M. J. Hawken, "Supperssion of neural responses to non-optimal stimuli correlates with selectivity in macaque V1," J. Neurophysiol. 87, 1018-1027 (2002).
[PubMed]

Campbell, F. W.

C. Blakemore and F. W. Campbell, "On the existence of neurons in the human visual system selective to the orientation and size of retinal images," J. Physiol. (London) 203, 237-260 (1969).

F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. (London) 197, 551-566 (1968).

Carter, B. E.

B. E. Carter and G. B. Henning, "The detection of gratings in narrow-band visual noise," J. Physiol. (London) 219, 355-365 (1971).

Crane, A. M.

D. G. Albrecht, W. S. Geisler, R. A. Frazor, and A. M. Crane, "Visual cortex of monkeys and cats: temporal dynamics of the contrast reponse function," J. Neurophysiol. 88, 888-913 (2002).
[PubMed]

Derington, A. M.

DeValois, K. K.

R. L. DeValois and K. K. DeValois, Spatial Vision (Oxford U. Press, 1988).

DeValois, R. L.

R. L. DeValois and K. K. DeValois, Spatial Vision (Oxford U. Press, 1988).

Fiorentini, A.

A. Fiorentini, M. Jeanne, and G. M. Toraldo di Francia, "Mésures photometrique visuelles sur un champ à gradient d'éclairement variable," Opt. Acta 10, 209-216 (1955).

Frazor, R. A.

D. G. Albrecht, W. S. Geisler, R. A. Frazor, and A. M. Crane, "Visual cortex of monkeys and cats: temporal dynamics of the contrast reponse function," J. Neurophysiol. 88, 888-913 (2002).
[PubMed]

Geisler, W. S.

D. G. Albrecht, W. S. Geisler, R. A. Frazor, and A. M. Crane, "Visual cortex of monkeys and cats: temporal dynamics of the contrast reponse function," J. Neurophysiol. 88, 888-913 (2002).
[PubMed]

D. B. Hamilton, D, G. Albrecht, and W., S. Geisler, "Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer functions," Vision Res. 29, 1285-1308 (1989).
[CrossRef] [PubMed]

Greis, U.

U. Greis and R. Röhler, "Untersuchungen der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung," Opt. Acta 17, 515-526 (1970).
[CrossRef]

Guillery, R. W.

R. W. Guillery and S. M. Sherman, "Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system," Neuron 33, 163-175 (2002).
[CrossRef] [PubMed]

Hamilton, D. B.

D. B. Hamilton, D, G. Albrecht, and W., S. Geisler, "Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer functions," Vision Res. 29, 1285-1308 (1989).
[CrossRef] [PubMed]

Hawken, M. J.

D. Xing, D. L. Ringach, R. M. Shapley, and M. J. Hawken, "Correlation of local and global orientation and spatial frequency in Macaque V1," J. Physiol. (London) 557, 923-933 (2004).
[CrossRef]

D. L. Ringach, C. E. Bredfeldt, R. M. Shapley, and M. J. Hawken, "Supperssion of neural responses to non-optimal stimuli correlates with selectivity in macaque V1," J. Neurophysiol. 87, 1018-1027 (2002).
[PubMed]

D. L. Ringach, M. J. Hawken, and R. M. Shapley, "Dynamics of orientation tuning in macaque primary visual cortex," Nature 387, 281-283 (1997).
[CrossRef] [PubMed]

Henning, G. B

Henning, G. B.

Hertz, B. G.

Hill, N. J.

G. B Henning, K. T. Hoddinott, Z. J. Wilson-Smith, and N. J. Hill, "Masking effect produced by Mach bands on the detection of narrow bars of random polarity," J. Opt. Soc. Am. A 211379-1387 (2004).
[CrossRef]

G. B. Henning, R. W. Millar, and N. J. Hill, "Detection of incremental and decremental bars at different locations across Mach bands and related stimuli," J. Opt. Soc. Am. A 171147-1159 (2001).
[CrossRef]

F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling and goodness-of-fit," Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

Hinton, J. L.

Hoddinott, K. T.

Horton, J. C.

L. C. Sincich and J. C. Horton, "The circuitry of V1 and V2: integration of color, form, and motion," Annu. Rev. Neurosci. 28, 303-326 (2005).
[CrossRef] [PubMed]

Jeanne, M.

A. Fiorentini, M. Jeanne, and G. M. Toraldo di Francia, "Mésures photometrique visuelles sur un champ à gradient d'éclairement variable," Opt. Acta 10, 209-216 (1955).

Julesz, B.

Lu, Z.-L.

G. Sperling and Z.-L. Lu, "Unequal representation of black and white in human vision," Invest. Ophthalmol. Visual Sci. 40, S200 (1999).

Mach, E.

E. Mach, "Über die Wirkung der raumlichen Verteilung des Lichtreizes auf die Netzhaut," in Mach Bands: Quantitative Studies on Neural Networks in the Retina, F.Ratliff, ed. (Holden-Day, 1965).

Madden, B. C.

Millar, R. W.

Novak, S.

Papoulos, A.

A. Papoulos, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).

Pelli, D.

D. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

Ratliff, F.

F. Ratliff, ed. in Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, 1965).

Ringach, D. L.

D. Xing, D. L. Ringach, R. M. Shapley, and M. J. Hawken, "Correlation of local and global orientation and spatial frequency in Macaque V1," J. Physiol. (London) 557, 923-933 (2004).
[CrossRef]

C. E. Bredfeldt and D. L. Ringach, "Dynamics of spatial frequency tuning in macaque V1," J. Neurosci. 22, 1976-1984 (2002).
[PubMed]

D. L. Ringach, C. E. Bredfeldt, R. M. Shapley, and M. J. Hawken, "Supperssion of neural responses to non-optimal stimuli correlates with selectivity in macaque V1," J. Neurophysiol. 87, 1018-1027 (2002).
[PubMed]

D. L. Ringach, M. J. Hawken, and R. M. Shapley, "Dynamics of orientation tuning in macaque primary visual cortex," Nature 387, 281-283 (1997).
[CrossRef] [PubMed]

Robson, J. G.

F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. (London) 197, 551-566 (1968).

Röhler, R.

U. Greis and R. Röhler, "Untersuchungen der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung," Opt. Acta 17, 515-526 (1970).
[CrossRef]

Shapley, R. M.

D. Xing, D. L. Ringach, R. M. Shapley, and M. J. Hawken, "Correlation of local and global orientation and spatial frequency in Macaque V1," J. Physiol. (London) 557, 923-933 (2004).
[CrossRef]

D. L. Ringach, C. E. Bredfeldt, R. M. Shapley, and M. J. Hawken, "Supperssion of neural responses to non-optimal stimuli correlates with selectivity in macaque V1," J. Neurophysiol. 87, 1018-1027 (2002).
[PubMed]

D. L. Ringach, M. J. Hawken, and R. M. Shapley, "Dynamics of orientation tuning in macaque primary visual cortex," Nature 387, 281-283 (1997).
[CrossRef] [PubMed]

Sherman, S. M.

R. W. Guillery and S. M. Sherman, "Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system," Neuron 33, 163-175 (2002).
[CrossRef] [PubMed]

Sincich, L. C.

L. C. Sincich and J. C. Horton, "The circuitry of V1 and V2: integration of color, form, and motion," Annu. Rev. Neurosci. 28, 303-326 (2005).
[CrossRef] [PubMed]

Sperling, G.

G. Sperling and Z.-L. Lu, "Unequal representation of black and white in human vision," Invest. Ophthalmol. Visual Sci. 40, S200 (1999).

S. Novak and G. Sperling "Visual thresholds near a continuously visible or a briefly presented light-dark boundary," J. Opt. Soc. Am. 53, 1-5 (1963).

Stromeyer, C. F.

Toraldo di Francia, G. M.

A. Fiorentini, M. Jeanne, and G. M. Toraldo di Francia, "Mésures photometrique visuelles sur un champ à gradient d'éclairement variable," Opt. Acta 10, 209-216 (1955).

van S. Graham, N.

N. van S. Graham, Visual Pattern Analyzers (Oxford U. Press, 1989).
[CrossRef]

Wichmann, F. A.

F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling and goodness-of-fit," Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

Wilson-Smith, Z. J.

Xing, D.

D. Xing, D. L. Ringach, R. M. Shapley, and M. J. Hawken, "Correlation of local and global orientation and spatial frequency in Macaque V1," J. Physiol. (London) 557, 923-933 (2004).
[CrossRef]

Zhang, L.

D. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

Annu. Rev. Neurosci. (1)

L. C. Sincich and J. C. Horton, "The circuitry of V1 and V2: integration of color, form, and motion," Annu. Rev. Neurosci. 28, 303-326 (2005).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

G. Sperling and Z.-L. Lu, "Unequal representation of black and white in human vision," Invest. Ophthalmol. Visual Sci. 40, S200 (1999).

J. Neurophysiol. (2)

D. G. Albrecht, W. S. Geisler, R. A. Frazor, and A. M. Crane, "Visual cortex of monkeys and cats: temporal dynamics of the contrast reponse function," J. Neurophysiol. 88, 888-913 (2002).
[PubMed]

D. L. Ringach, C. E. Bredfeldt, R. M. Shapley, and M. J. Hawken, "Supperssion of neural responses to non-optimal stimuli correlates with selectivity in macaque V1," J. Neurophysiol. 87, 1018-1027 (2002).
[PubMed]

J. Neurosci. (1)

C. E. Bredfeldt and D. L. Ringach, "Dynamics of spatial frequency tuning in macaque V1," J. Neurosci. 22, 1976-1984 (2002).
[PubMed]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (4)

J. Physiol. (London) (4)

D. Xing, D. L. Ringach, R. M. Shapley, and M. J. Hawken, "Correlation of local and global orientation and spatial frequency in Macaque V1," J. Physiol. (London) 557, 923-933 (2004).
[CrossRef]

F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. (London) 197, 551-566 (1968).

C. Blakemore and F. W. Campbell, "On the existence of neurons in the human visual system selective to the orientation and size of retinal images," J. Physiol. (London) 203, 237-260 (1969).

B. E. Carter and G. B. Henning, "The detection of gratings in narrow-band visual noise," J. Physiol. (London) 219, 355-365 (1971).

Nature (1)

D. L. Ringach, M. J. Hawken, and R. M. Shapley, "Dynamics of orientation tuning in macaque primary visual cortex," Nature 387, 281-283 (1997).
[CrossRef] [PubMed]

Neuron (1)

R. W. Guillery and S. M. Sherman, "Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system," Neuron 33, 163-175 (2002).
[CrossRef] [PubMed]

Opt. Acta (2)

U. Greis and R. Röhler, "Untersuchungen der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung," Opt. Acta 17, 515-526 (1970).
[CrossRef]

A. Fiorentini, M. Jeanne, and G. M. Toraldo di Francia, "Mésures photometrique visuelles sur un champ à gradient d'éclairement variable," Opt. Acta 10, 209-216 (1955).

Percept. Psychophys. (2)

F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling and goodness-of-fit," Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

Vision Res. (2)

D. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

D. B. Hamilton, D, G. Albrecht, and W., S. Geisler, "Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer functions," Vision Res. 29, 1285-1308 (1989).
[CrossRef] [PubMed]

Other (5)

N. van S. Graham, Visual Pattern Analyzers (Oxford U. Press, 1989).
[CrossRef]

R. L. DeValois and K. K. DeValois, Spatial Vision (Oxford U. Press, 1988).

E. Mach, "Über die Wirkung der raumlichen Verteilung des Lichtreizes auf die Netzhaut," in Mach Bands: Quantitative Studies on Neural Networks in the Retina, F.Ratliff, ed. (Holden-Day, 1965).

F. Ratliff, ed. in Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, 1965).

A. Papoulos, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

For a single observer, the threshold luminance change (corresponding to 75% correct) divided by the masking luminance as a function of location. The results were extracted from an experiment in which the polarity of the signal was randomized. (a) data for increments, (b) data for decrements. The background was a horizontally orientated stimulus producing a dark Mach band near the stimulus inflection point at 1.3 ° and a bright Mach band near the stimulus inflection point at 2.6 ° . The signal to be detected was a 0 . 9 horizontal bar. The vertical lines indicate ± 1 standard deviation.

Fig. 2
Fig. 2

Cross-sectional luminance profile of narrow-band signal bars (in the left-hand panels) and their spectra the top pair is for an (incremental) 5 cycles deg cosine carrier within an approximately Gaussian envelope with a σ of about 6 . In the lower pair the carrier is 15 cycles deg within the same Gaussian envelope. Decremental signals were produced by changing the sign of the carrier and without affecting the spectra.

Fig. 3
Fig. 3

In the same format as Fig. 1, the increments (upper panel) and decrements (lower panel) corresponding to 75% correct for observer TLC. The signal to be detected was the 5 cycles deg bar. The vertical lines indicate ± 1 standard deviation.

Fig. 4
Fig. 4

As in Fig. 3 but for observer GBH.

Fig. 5
Fig. 5

As in Fig. 3 but with a masking stimulus that was a step in luminance from the luminance of the lower plateau to that of the upper plateau. The step occurred at 2 ° .

Fig. 6
Fig. 6

As in Fig. 5 but for observer GBH.

Fig. 7
Fig. 7

For GBH, the threshold luminance change (corresponding to 75% correct) divided by the masking luminance as a function of location across the Mach-band stimulus. The signal to be detected was a 0 . 9 horizontal bar, and the results were extracted from an experiment in which the polarity of the signal was randomized. (a) data for increments; (b) data for decrements. Vertical lines indicate ± 1 standard deviation. The stimulus duration was 200 ms .

Fig. 8
Fig. 8

As in Fig. 7 but for observer DAC.

Fig. 9
Fig. 9

As in Fig. 7 but for stimulus duration of 25 ms .

Fig. 10
Fig. 10

As in Fig. 8 but for stimulus duration of 25 ms .

Fig. 11
Fig. 11

Data for 25-ms increments and decrements on the same graph; upper panel, GBH; lower panel, DAC.

Fig. 12
Fig. 12

Left-hand panel, the spatial weighting function of a channel tuned to 5 cycles deg based on noise masking data and assuming cosine phase characteristics that produces a weighting function that is symmetrical about its positive peak. Right-hand panel, corresponding spatial-frequency tuning.

Tables (1)

Tables Icon

Table 1 Estimates of the Frequency (cycles/deg) and Phase (deg) of Performance Ripples versus Location for Luminance Increment (incs) and Decrements (decs) a

Metrics