Abstract

We studied both theoretically and experimentally the intensity distribution of a Gaussian laser beam when it was focused by an objective lens with its numerical aperture up to 0.95. Approximate formulas for full width at half-maximum (FWHM) of the intensity distribution at focus were derived for very large and very small initial beam waists with respect to the entrance pupil radius of the objective lens. In experiments, the energy flux through a 0.5μm pinhole was measured for various pinhole positions. It was found in theoretical analysis and confirmed in experiments that the FWHMs at focus in the transverse and longitudinal directions do not increase much from the ultimate FWHMs until the input beam waist is reduced below half of the entrance pupil radius.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription