Abstract

We propose a blind watermarking method where the watermark is a hologram itself. In the proposed approach, the quantized phase of the hologram is embedded into the wavelet-transformed host image using quantization index modulation. In the detection stage, wavelet transform of the watermarked image followed by a minimum distance decoder is used. The proposed method is blind since it requires only information about the quantizers and the parameters of the hologram recording process. The robustness of the proposed technique is tested against several attacks such as filtering, compression, occlusion, and cropping. Moreover, we discuss the effect of quantization of the hologram on the reconstruction quality.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Nikolaidis and I. Pitas, 'Robust image watermarking in the spatial domain,' Signal Process. 66, 385-403 (1998).
    [CrossRef]
  2. F. Sebe, J. Domingo-Ferrer, and J. Herrera, 'Spatial-domain image watermarking robust against compression, filtering, cropping, and scaling,' Information Security: Fourth International Conference, (Springer, 2001), pp. 45-53.
  3. C. I. Podilchuk and E. J. Delp, 'Digital watermarking: algorithms and applications,' IEEE Signal Process. Mag. 18, 33-46 (2001).
    [CrossRef]
  4. F. Hartung and M. Kutter, 'Multimedia watermarking techniques,' Proc. IEEE 87, 1079-1107 (1999).
    [CrossRef]
  5. G. W. Braudaway, 'Protecting publicly-available images with an invisible image watermark,' in Proceedings of the IEEE International Conference on Image Processing (IEEE Press, 1997), pp. 524-527.
    [CrossRef]
  6. A. A. Reddy and B. N. Chatterji, 'A new wavelet based logo-watermarking scheme,' Pattern Recogn. Lett. 26, 1019-1027 (2005).
    [CrossRef]
  7. J. Zhang and F. Xiong, 'A novel watermarking for image security,' in Proceedings of Computer and Information Sciences-ISCIS (Springer, 2004), pp. 420-429.
  8. D. Kundur and D. Hatzinakos, 'Toward robust logo watermarking using multiresolution image fusion principles,' IEEE Trans. Multimedia 6, 185-198 (2004).
    [CrossRef]
  9. S. Kishk and B. Javidi, '3D object watermarking by a 3D hidden object,' Opt. Express 11, 874-888 (2003).
    [CrossRef] [PubMed]
  10. H. Kim and Y. H. Lee, 'Optimal watermarking of digital hologram of 3D object,' Opt. Express 13, 2881-2886 (2005).
    [CrossRef] [PubMed]
  11. N. Takai and Y. Mifune, 'Digital watermarking by a holographic technique,' Appl. Opt. 41, 865-873 (2002).
    [CrossRef] [PubMed]
  12. L. Z. Cai, M. Z. He, Q. Liu, and X. L. Yang, 'Digital image encryption and watermarking by phase-shifting interferometry,' Appl. Opt. 43, 3078-3084 (2004).
    [CrossRef] [PubMed]
  13. M. Z. He, L. Z. Cai, Q. Liu, and X. L. Yang, 'Phase-only encryption and watermarking based on phase-shifting interferometry,' Appl. Opt. 44, 2600-2606 (2005).
    [CrossRef] [PubMed]
  14. H. T. Chang and C. L. Tsan, 'Image watermarking by use of digital holography embedded in the discrete-cosine-transform domain,' Appl. Opt. 44, 6211-6219 (2005).
    [CrossRef] [PubMed]
  15. D. Gabor, 'Holography, 1948-1971,' Proc. IEEE 60, 655-668 (1972).
    [CrossRef]
  16. G. Saxby, Practical Holography (Prentice-Hall, 1988).
    [CrossRef]
  17. T. Kreis, Holographic Interferometry: Principles and Methods, 1st ed. (Akademie-Verlag, 1996).
  18. E. N. Leith and J. Upatniek, 'Wavefront reconstruction with continuous-tone objects,' J. Opt. Soc. Am. 53, 1377-1381 (1963).
    [CrossRef]
  19. I. Yamaguchi and T. Zhang, 'Phase-shifting digital holography,' Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  20. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, 'Image formation in phase-shifting digital holography and applications to microscopy,' Appl. Opt. 40, 6177-6186 (2001).
    [CrossRef]
  21. U. Schnars and W. P. O. Jüptner, 'Review article: digital recording and numerical reconstruction of holograms,' Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  22. U. Schnars, 'Direct phase determination in hologram interferometry with use of digitally recorded holograms,' J. Opt. Soc. Am. A 11, 2011-2015 (1994).
    [CrossRef]
  23. H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).
  24. T. J. Naughton, J. B. McDonald, and B. Javidi, 'Efficient compression of Fresnel fields for internet transmission of three-dimensional images,' Appl. Opt. 42, 4758-4764 (2003).
    [CrossRef] [PubMed]
  25. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, 'Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,' Appl. Opt. 41, 6187-6192 (2002).
    [CrossRef] [PubMed]
  26. T. J. Naughton and B. Javidi, 'Compression of encrypted three-dimensional objects using digital holography,' Appl. Opt. 43, 2233-2238 (2004).
  27. G. A. Mills and I. Yamaguchi, 'Effects of quantization in phase-shifting digital holography,' Appl. Opt. 44, 1216-1225 (2005).
    [CrossRef] [PubMed]
  28. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, 'Image reconstruction only by phase data in phase-shifting digital holography,' Appl. Opt. 45, 975-983 (2006).
    [CrossRef] [PubMed]
  29. N. C. Gallagher, 'Optimum quantization in digital holography,' Appl. Opt. 17, 109-115 (1978).
    [CrossRef] [PubMed]
  30. B. Chen and G. W. Wornell, 'Quantization index modulation: a class of provably good methods for digital watermarking and information embedding,' IEEE Trans. Inf. Theory 47, 1423-1443 (2001).
    [CrossRef]
  31. B. Chen and G. W. Wornell, 'Quantization index modulation methods for digital watermarking and information embedding of multimedia,' J. VLSI Signal Proc. Syst. Signal, Image, Video Technol. 27, 7-33 (2001).

2006 (1)

2005 (5)

2004 (3)

L. Z. Cai, M. Z. He, Q. Liu, and X. L. Yang, 'Digital image encryption and watermarking by phase-shifting interferometry,' Appl. Opt. 43, 3078-3084 (2004).
[CrossRef] [PubMed]

D. Kundur and D. Hatzinakos, 'Toward robust logo watermarking using multiresolution image fusion principles,' IEEE Trans. Multimedia 6, 185-198 (2004).
[CrossRef]

T. J. Naughton and B. Javidi, 'Compression of encrypted three-dimensional objects using digital holography,' Appl. Opt. 43, 2233-2238 (2004).

2003 (2)

2002 (3)

2001 (4)

B. Chen and G. W. Wornell, 'Quantization index modulation: a class of provably good methods for digital watermarking and information embedding,' IEEE Trans. Inf. Theory 47, 1423-1443 (2001).
[CrossRef]

B. Chen and G. W. Wornell, 'Quantization index modulation methods for digital watermarking and information embedding of multimedia,' J. VLSI Signal Proc. Syst. Signal, Image, Video Technol. 27, 7-33 (2001).

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, 'Image formation in phase-shifting digital holography and applications to microscopy,' Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

C. I. Podilchuk and E. J. Delp, 'Digital watermarking: algorithms and applications,' IEEE Signal Process. Mag. 18, 33-46 (2001).
[CrossRef]

1999 (1)

F. Hartung and M. Kutter, 'Multimedia watermarking techniques,' Proc. IEEE 87, 1079-1107 (1999).
[CrossRef]

1998 (1)

N. Nikolaidis and I. Pitas, 'Robust image watermarking in the spatial domain,' Signal Process. 66, 385-403 (1998).
[CrossRef]

1997 (1)

1994 (1)

1978 (1)

1972 (1)

D. Gabor, 'Holography, 1948-1971,' Proc. IEEE 60, 655-668 (1972).
[CrossRef]

1963 (1)

Bertaux, N.

Braudaway, G. W.

G. W. Braudaway, 'Protecting publicly-available images with an invisible image watermark,' in Proceedings of the IEEE International Conference on Image Processing (IEEE Press, 1997), pp. 524-527.
[CrossRef]

Cai, L. Z.

Caulfield, H. J.

H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).

Chang, H. T.

Chatterji, B. N.

A. A. Reddy and B. N. Chatterji, 'A new wavelet based logo-watermarking scheme,' Pattern Recogn. Lett. 26, 1019-1027 (2005).
[CrossRef]

Chen, B.

B. Chen and G. W. Wornell, 'Quantization index modulation: a class of provably good methods for digital watermarking and information embedding,' IEEE Trans. Inf. Theory 47, 1423-1443 (2001).
[CrossRef]

B. Chen and G. W. Wornell, 'Quantization index modulation methods for digital watermarking and information embedding of multimedia,' J. VLSI Signal Proc. Syst. Signal, Image, Video Technol. 27, 7-33 (2001).

Delp, E. J.

C. I. Podilchuk and E. J. Delp, 'Digital watermarking: algorithms and applications,' IEEE Signal Process. Mag. 18, 33-46 (2001).
[CrossRef]

Domingo-Ferrer, J.

F. Sebe, J. Domingo-Ferrer, and J. Herrera, 'Spatial-domain image watermarking robust against compression, filtering, cropping, and scaling,' Information Security: Fourth International Conference, (Springer, 2001), pp. 45-53.

Frauel, Y.

Gabor, D.

D. Gabor, 'Holography, 1948-1971,' Proc. IEEE 60, 655-668 (1972).
[CrossRef]

Gallagher, N. C.

Hartung, F.

F. Hartung and M. Kutter, 'Multimedia watermarking techniques,' Proc. IEEE 87, 1079-1107 (1999).
[CrossRef]

Hatzinakos, D.

D. Kundur and D. Hatzinakos, 'Toward robust logo watermarking using multiresolution image fusion principles,' IEEE Trans. Multimedia 6, 185-198 (2004).
[CrossRef]

He, M. Z.

Herrera, J.

F. Sebe, J. Domingo-Ferrer, and J. Herrera, 'Spatial-domain image watermarking robust against compression, filtering, cropping, and scaling,' Information Security: Fourth International Conference, (Springer, 2001), pp. 45-53.

Javidi, B.

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, 'Review article: digital recording and numerical reconstruction of holograms,' Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Kato, J.

Kim, H.

Kishk, S.

Kreis, T.

T. Kreis, Holographic Interferometry: Principles and Methods, 1st ed. (Akademie-Verlag, 1996).

Kundur, D.

D. Kundur and D. Hatzinakos, 'Toward robust logo watermarking using multiresolution image fusion principles,' IEEE Trans. Multimedia 6, 185-198 (2004).
[CrossRef]

Kutter, M.

F. Hartung and M. Kutter, 'Multimedia watermarking techniques,' Proc. IEEE 87, 1079-1107 (1999).
[CrossRef]

Lee, Y. H.

Leith, E. N.

Liu, Q.

Matoba, O.

McDonald, J. B.

Mifune, Y.

Mills, G. A.

Mizuno, J.

Naughton, T. J.

Nikolaidis, N.

N. Nikolaidis and I. Pitas, 'Robust image watermarking in the spatial domain,' Signal Process. 66, 385-403 (1998).
[CrossRef]

Ohta, S.

Pitas, I.

N. Nikolaidis and I. Pitas, 'Robust image watermarking in the spatial domain,' Signal Process. 66, 385-403 (1998).
[CrossRef]

Podilchuk, C. I.

C. I. Podilchuk and E. J. Delp, 'Digital watermarking: algorithms and applications,' IEEE Signal Process. Mag. 18, 33-46 (2001).
[CrossRef]

Reddy, A. A.

A. A. Reddy and B. N. Chatterji, 'A new wavelet based logo-watermarking scheme,' Pattern Recogn. Lett. 26, 1019-1027 (2005).
[CrossRef]

Saxby, G.

G. Saxby, Practical Holography (Prentice-Hall, 1988).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Jüptner, 'Review article: digital recording and numerical reconstruction of holograms,' Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

U. Schnars, 'Direct phase determination in hologram interferometry with use of digitally recorded holograms,' J. Opt. Soc. Am. A 11, 2011-2015 (1994).
[CrossRef]

Sebe, F.

F. Sebe, J. Domingo-Ferrer, and J. Herrera, 'Spatial-domain image watermarking robust against compression, filtering, cropping, and scaling,' Information Security: Fourth International Conference, (Springer, 2001), pp. 45-53.

Takai, N.

Tsan, C. L.

Upatniek, J.

Wornell, G. W.

B. Chen and G. W. Wornell, 'Quantization index modulation methods for digital watermarking and information embedding of multimedia,' J. VLSI Signal Proc. Syst. Signal, Image, Video Technol. 27, 7-33 (2001).

B. Chen and G. W. Wornell, 'Quantization index modulation: a class of provably good methods for digital watermarking and information embedding,' IEEE Trans. Inf. Theory 47, 1423-1443 (2001).
[CrossRef]

Xiong, F.

J. Zhang and F. Xiong, 'A novel watermarking for image security,' in Proceedings of Computer and Information Sciences-ISCIS (Springer, 2004), pp. 420-429.

Yamaguchi, I.

Yamamoto, K.

Yang, X. L.

Yokota, M.

Zhang, J.

J. Zhang and F. Xiong, 'A novel watermarking for image security,' in Proceedings of Computer and Information Sciences-ISCIS (Springer, 2004), pp. 420-429.

Zhang, T.

Appl. Opt. (11)

N. Takai and Y. Mifune, 'Digital watermarking by a holographic technique,' Appl. Opt. 41, 865-873 (2002).
[CrossRef] [PubMed]

L. Z. Cai, M. Z. He, Q. Liu, and X. L. Yang, 'Digital image encryption and watermarking by phase-shifting interferometry,' Appl. Opt. 43, 3078-3084 (2004).
[CrossRef] [PubMed]

M. Z. He, L. Z. Cai, Q. Liu, and X. L. Yang, 'Phase-only encryption and watermarking based on phase-shifting interferometry,' Appl. Opt. 44, 2600-2606 (2005).
[CrossRef] [PubMed]

H. T. Chang and C. L. Tsan, 'Image watermarking by use of digital holography embedded in the discrete-cosine-transform domain,' Appl. Opt. 44, 6211-6219 (2005).
[CrossRef] [PubMed]

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, 'Image formation in phase-shifting digital holography and applications to microscopy,' Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

T. J. Naughton, J. B. McDonald, and B. Javidi, 'Efficient compression of Fresnel fields for internet transmission of three-dimensional images,' Appl. Opt. 42, 4758-4764 (2003).
[CrossRef] [PubMed]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, 'Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,' Appl. Opt. 41, 6187-6192 (2002).
[CrossRef] [PubMed]

T. J. Naughton and B. Javidi, 'Compression of encrypted three-dimensional objects using digital holography,' Appl. Opt. 43, 2233-2238 (2004).

G. A. Mills and I. Yamaguchi, 'Effects of quantization in phase-shifting digital holography,' Appl. Opt. 44, 1216-1225 (2005).
[CrossRef] [PubMed]

I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, 'Image reconstruction only by phase data in phase-shifting digital holography,' Appl. Opt. 45, 975-983 (2006).
[CrossRef] [PubMed]

N. C. Gallagher, 'Optimum quantization in digital holography,' Appl. Opt. 17, 109-115 (1978).
[CrossRef] [PubMed]

IEEE Signal Process. Mag. (1)

C. I. Podilchuk and E. J. Delp, 'Digital watermarking: algorithms and applications,' IEEE Signal Process. Mag. 18, 33-46 (2001).
[CrossRef]

IEEE Trans. Inf. Theory (1)

B. Chen and G. W. Wornell, 'Quantization index modulation: a class of provably good methods for digital watermarking and information embedding,' IEEE Trans. Inf. Theory 47, 1423-1443 (2001).
[CrossRef]

IEEE Trans. Multimedia (1)

D. Kundur and D. Hatzinakos, 'Toward robust logo watermarking using multiresolution image fusion principles,' IEEE Trans. Multimedia 6, 185-198 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. VLSI Signal Proc. Syst. Signal, Image, Video Technol. (1)

B. Chen and G. W. Wornell, 'Quantization index modulation methods for digital watermarking and information embedding of multimedia,' J. VLSI Signal Proc. Syst. Signal, Image, Video Technol. 27, 7-33 (2001).

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Jüptner, 'Review article: digital recording and numerical reconstruction of holograms,' Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Pattern Recogn. Lett. (1)

A. A. Reddy and B. N. Chatterji, 'A new wavelet based logo-watermarking scheme,' Pattern Recogn. Lett. 26, 1019-1027 (2005).
[CrossRef]

Proc. IEEE (2)

F. Hartung and M. Kutter, 'Multimedia watermarking techniques,' Proc. IEEE 87, 1079-1107 (1999).
[CrossRef]

D. Gabor, 'Holography, 1948-1971,' Proc. IEEE 60, 655-668 (1972).
[CrossRef]

Signal Process. (1)

N. Nikolaidis and I. Pitas, 'Robust image watermarking in the spatial domain,' Signal Process. 66, 385-403 (1998).
[CrossRef]

Other (6)

F. Sebe, J. Domingo-Ferrer, and J. Herrera, 'Spatial-domain image watermarking robust against compression, filtering, cropping, and scaling,' Information Security: Fourth International Conference, (Springer, 2001), pp. 45-53.

G. W. Braudaway, 'Protecting publicly-available images with an invisible image watermark,' in Proceedings of the IEEE International Conference on Image Processing (IEEE Press, 1997), pp. 524-527.
[CrossRef]

J. Zhang and F. Xiong, 'A novel watermarking for image security,' in Proceedings of Computer and Information Sciences-ISCIS (Springer, 2004), pp. 420-429.

G. Saxby, Practical Holography (Prentice-Hall, 1988).
[CrossRef]

T. Kreis, Holographic Interferometry: Principles and Methods, 1st ed. (Akademie-Verlag, 1996).

H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Block diagram of the proposed method for watermark (WM) (a) embedding and (b) extraction.

Fig. 2
Fig. 2

Experimental setup of hologram recording by phase-shifting digital holography. BE, beam expander; BS, beam splitter; RP, retardation plate.

Fig. 3
Fig. 3

(a) Magnitude, (b) phase, (c) reconstruction of recorded Chess Knight hologram (recorded by Bremer Institut für angewandte Strahltechnik).

Fig. 4
Fig. 4

(a) Original image and (b) magnitude, (c) phase, and (d) reconstruction of generated hologram.

Fig. 5
Fig. 5

Reconstruction of cropped hologram of size (a) 256 × 256 and (b) 128 × 128 .

Fig. 6
Fig. 6

(a) Hologram occluded at 90% and (b) its reconstruction.

Fig. 7
Fig. 7

(a) Reconstruction from phase of hologram only and (b) effect of quantization of phase on reconstructed object. PSNR, peak signal-to-noise ratio.

Fig. 8
Fig. 8

QIM for information embedding.

Fig. 9
Fig. 9

(a) Original 512 × 512 Lena image and (b)–(e) its watermarked versions with PSNR 40.7677, 38.2606, 34.5891, and 28.4461 dB , respectively. (f) Original 1024 × 1024 Man image and (g)–(j) its watermarked versions with PSNR of 40.9248, 38.4843, 34.9890, and 28.9615 dB , respectively.

Fig. 10
Fig. 10

Reconstruction of watermark extracted from (a) marked Lena ( 64 × 64 ) and (b) marked Man images ( 128 × 128 ) .

Fig. 11
Fig. 11

JPEG compressed watermarks at 15% quality. (a) Lena and (b) Man image using 16 bin quantizers and (c) and (d) the reconstruction of the extracted watermarks, respectively.

Fig. 12
Fig. 12

Effect of JPEG compression on the extracted watermark for Lena image using different quantization parameters.

Fig. 13
Fig. 13

Effect of JPEG compression on the extracted watermark for Man image using different quantization parameters.

Fig. 14
Fig. 14

Noise added image PSNR versus correlation between embedded and extracted watermarks for Lena image using 64, 48, 32, 16 bin quantizers.

Fig. 15
Fig. 15

Noise added image PSNR versus correlation between embedded and extracted watermarks for Man image using 64, 48, 32, 16 bin quantizers.

Fig. 16
Fig. 16

(a) Lena image at 25% remaining watermarks and (b) Man image at 9.77% remaining watermarks after cropping, (c) and (d) extracted watermarks from these images, respectively.

Fig. 17
Fig. 17

(a) Lena image at 50% occluded watermarks and (b) Man image at 75% occluded watermarks, (c) and (d) extracted watermarks from these images, respectively.

Tables (4)

Tables Icon

Table 1 Test Results for the Watermarked Images in Figs. 9(b) and 9(g)

Tables Icon

Table 2 Test Results for the Watermarked Images in Figs. 9(c) and 9(h)

Tables Icon

Table 3 Test Results for the Watermarked Images in Figs. 9(d) and 9(i)

Tables Icon

Table 4 Test Results for the Watermarked Images in Figs. 9(e) and 9(j)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

h ( x , y ) = 1 j λ d exp ( j 2 π λ d ) u ( ξ , η ) exp { j π λ d [ ( x ξ ) 2 + ( y η ) 2 ] } d ξ d η ,
h ( x , y ) = ( I 0 I 2 ) + j ( I 1 I 3 ) .
u ( υ , μ ) = j λ d exp ( j 2 π λ d ) exp [ j π λ d ( υ 2 + μ 2 ) ] F 1 { h ( x , y ) R ( x , y ) exp [ j π λ d ( x 2 + y 2 ) ] } .
h ( k , l ) = 1 j λ d exp ( j 2 π λ d ) m = M / 2 M / 2 n = N / 2 N / 2 U 0 ( m , n ) exp { j π λ d [ ( k Δ ξ m Δ x ) 2 + ( l Δ η n Δ y ) 2 ] } ,
Δ x = λ d M Δ ξ , Δ y = λ d N . Δ η .
U 0 ( m , n ) = j λ d exp ( j 2 π λ d ) k = M / 2 M / 2 l = N / 2 N / 2 h ( k , l ) exp { j π λ d [ ( m Δ x k Δ ξ ) 2 + ( n Δ y l Δ η ) 2 ] } .
s ( x , m ) = { q 1 ( x ) , if m = 0 q 2 ( x ) , if m = 1 } ,
q 2 ( x ) = q 1 ( x ) + Δ / 2 .
w i ( j ) = s ( w i ( j ) , b i ( j ) ) ,
m ̂ = { 0 if c q 1 ( x ) c q 2 ( x ) 1 if c q 1 ( x ) > c q 2 ( x ) } .
CC = m n ( A m , n A ¯ ) ( B m , n B ¯ ) [ m n ( A m , n A ¯ ) 2 ] [ m n ( B m , n B ¯ ) 2 ] ,
BCR = m n A m , n B m , n M N ,
σ I = ( I ext I emb ) 2 1 / 2 I emb ,

Metrics