Abstract

Ignoring the effect of the small aperture, we deduce the optical field distribution of the so-called plano–convex solid immersion mirror with a small aperture on the apex (PC-SIM) by using the vector diffraction theory. The simulation results show that a PC-SIM, like a solid immersion lens (SIL), can achieve high resolution. Unlike the SIL, the PC-SIM can effectively reduce the spreading of the spot size with increasing distance from the interface. The size and intensity of the spot are related not only to the refractive index of the solid immersion medium but also to the structure parameter of the PC-SIM. The size of a spot smaller than a quarter wavelength can be obtained simply by optimizing the structure parameter of a PC-SIM but not by decreasing the size of the small aperture.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, 'Solid immersion microscope,' Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  2. B. D. Terris, H. J. Mamin, and D. Rugar, 'Near-field optical data storage using a solid immersion lens,' Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  3. Y. Zhang, W. Zheng, and Y. Zou, 'Focal-field distribution of the solid immersion lens system with an annular filter,' Optik (Stuttgart) 115, 277-280 (2004).
    [CrossRef]
  4. Y. Zhang, H. Xiao, and C. Zheng, 'Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,' New J. Phys. 6, 75.1-75.14 (2004).
    [CrossRef]
  5. Y. Zhang, C. Zheng, and H. Xiao, 'Improving the resolution of a solid immersion lens optical system using a multiphase Fresnel zone plate,' Opt. Laser Technol. 37, 444-448 (2005).
    [CrossRef]
  6. C. Liu and S. H. Park, 'Numerical analysis of an annular-aperture solid immersion lens,' Opt. Lett. 29, 1742-1744 (2004).
    [CrossRef] [PubMed]
  7. C. Peng, C. Mihalcea, K. Pelhos, and W. A. Challener, 'Focusing characteristics of a planar solid-immersion mirror,' Appl. Opt. 45, 1785-1793 (2006).
    [CrossRef] [PubMed]
  8. C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, 'Near-field optical recording using a planar solid immersion mirror,' Appl. Phys. Lett. 87, 151105 (2005).
    [CrossRef]
  9. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, 'Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,' Opt. Express 13, 7189-7197 (2005).
    [CrossRef] [PubMed]
  10. H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, 'Plano-convex solid immersion mirror with a small aperture for near-field optical data storage,' Opt. Rev. 9, 66-69 (2002).
    [CrossRef]
  11. E. Wolf, 'Electromagnetic diffraction in optical systems. I. An integral representation of the image field,' Proc. R. Soc. London, Ser. A 253, 349-357 (1959).
    [CrossRef]
  12. B. Richards and E. Wolf, 'Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,' Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
    [CrossRef]
  13. F. Guo, T. E. Schlesinger, and D. D. Stancil, 'Optical field study of near-field optical recording with a solid immersion lens,' Appl. Opt. 39, 324-332 (2000).
    [CrossRef]

2006 (1)

2005 (3)

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, 'Near-field optical recording using a planar solid immersion mirror,' Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, 'Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,' Opt. Express 13, 7189-7197 (2005).
[CrossRef] [PubMed]

Y. Zhang, C. Zheng, and H. Xiao, 'Improving the resolution of a solid immersion lens optical system using a multiphase Fresnel zone plate,' Opt. Laser Technol. 37, 444-448 (2005).
[CrossRef]

2004 (3)

Y. Zhang, W. Zheng, and Y. Zou, 'Focal-field distribution of the solid immersion lens system with an annular filter,' Optik (Stuttgart) 115, 277-280 (2004).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, 'Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,' New J. Phys. 6, 75.1-75.14 (2004).
[CrossRef]

C. Liu and S. H. Park, 'Numerical analysis of an annular-aperture solid immersion lens,' Opt. Lett. 29, 1742-1744 (2004).
[CrossRef] [PubMed]

2002 (1)

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, 'Plano-convex solid immersion mirror with a small aperture for near-field optical data storage,' Opt. Rev. 9, 66-69 (2002).
[CrossRef]

2000 (1)

1994 (1)

B. D. Terris, H. J. Mamin, and D. Rugar, 'Near-field optical data storage using a solid immersion lens,' Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

1990 (1)

S. M. Mansfield and G. S. Kino, 'Solid immersion microscope,' Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

1959 (2)

E. Wolf, 'Electromagnetic diffraction in optical systems. I. An integral representation of the image field,' Proc. R. Soc. London, Ser. A 253, 349-357 (1959).
[CrossRef]

B. Richards and E. Wolf, 'Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,' Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Büchel, D.

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, 'Near-field optical recording using a planar solid immersion mirror,' Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

Challener, W. A.

Gage, E. C.

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, 'Near-field optical recording using a planar solid immersion mirror,' Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

Guo, F.

Hatano, H.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, 'Plano-convex solid immersion mirror with a small aperture for near-field optical data storage,' Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Hoshino, T.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, 'Plano-convex solid immersion mirror with a small aperture for near-field optical data storage,' Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Kino, G. S.

S. M. Mansfield and G. S. Kino, 'Solid immersion microscope,' Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Liu, C.

Mamin, H. J.

B. D. Terris, H. J. Mamin, and D. Rugar, 'Near-field optical data storage using a solid immersion lens,' Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, 'Solid immersion microscope,' Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Mihalcea, C.

Ogura, K.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, 'Plano-convex solid immersion mirror with a small aperture for near-field optical data storage,' Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Park, S. H.

Pelhos, K.

Peng, C.

Richards, B.

B. Richards and E. Wolf, 'Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,' Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, and D. Rugar, 'Near-field optical data storage using a solid immersion lens,' Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Sakata, T.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, 'Plano-convex solid immersion mirror with a small aperture for near-field optical data storage,' Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Schlesinger, T. E.

Stancil, D. D.

Terris, B. D.

B. D. Terris, H. J. Mamin, and D. Rugar, 'Near-field optical data storage using a solid immersion lens,' Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Ueda, H.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, 'Plano-convex solid immersion mirror with a small aperture for near-field optical data storage,' Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, 'Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,' Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

E. Wolf, 'Electromagnetic diffraction in optical systems. I. An integral representation of the image field,' Proc. R. Soc. London, Ser. A 253, 349-357 (1959).
[CrossRef]

Xiao, H.

Y. Zhang, C. Zheng, and H. Xiao, 'Improving the resolution of a solid immersion lens optical system using a multiphase Fresnel zone plate,' Opt. Laser Technol. 37, 444-448 (2005).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, 'Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,' New J. Phys. 6, 75.1-75.14 (2004).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Zheng, and H. Xiao, 'Improving the resolution of a solid immersion lens optical system using a multiphase Fresnel zone plate,' Opt. Laser Technol. 37, 444-448 (2005).
[CrossRef]

Y. Zhang, W. Zheng, and Y. Zou, 'Focal-field distribution of the solid immersion lens system with an annular filter,' Optik (Stuttgart) 115, 277-280 (2004).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, 'Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,' New J. Phys. 6, 75.1-75.14 (2004).
[CrossRef]

Zheng, C.

Y. Zhang, C. Zheng, and H. Xiao, 'Improving the resolution of a solid immersion lens optical system using a multiphase Fresnel zone plate,' Opt. Laser Technol. 37, 444-448 (2005).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, 'Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,' New J. Phys. 6, 75.1-75.14 (2004).
[CrossRef]

Zheng, W.

Y. Zhang, W. Zheng, and Y. Zou, 'Focal-field distribution of the solid immersion lens system with an annular filter,' Optik (Stuttgart) 115, 277-280 (2004).
[CrossRef]

Zou, Y.

Y. Zhang, W. Zheng, and Y. Zou, 'Focal-field distribution of the solid immersion lens system with an annular filter,' Optik (Stuttgart) 115, 277-280 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, 'Near-field optical recording using a planar solid immersion mirror,' Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

S. M. Mansfield and G. S. Kino, 'Solid immersion microscope,' Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Rugar, 'Near-field optical data storage using a solid immersion lens,' Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

New J. Phys. (1)

Y. Zhang, H. Xiao, and C. Zheng, 'Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,' New J. Phys. 6, 75.1-75.14 (2004).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

Y. Zhang, C. Zheng, and H. Xiao, 'Improving the resolution of a solid immersion lens optical system using a multiphase Fresnel zone plate,' Opt. Laser Technol. 37, 444-448 (2005).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, 'Plano-convex solid immersion mirror with a small aperture for near-field optical data storage,' Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Optik (Stuttgart) (1)

Y. Zhang, W. Zheng, and Y. Zou, 'Focal-field distribution of the solid immersion lens system with an annular filter,' Optik (Stuttgart) 115, 277-280 (2004).
[CrossRef]

Proc. R. Soc. London, Ser. A (2)

E. Wolf, 'Electromagnetic diffraction in optical systems. I. An integral representation of the image field,' Proc. R. Soc. London, Ser. A 253, 349-357 (1959).
[CrossRef]

B. Richards and E. Wolf, 'Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,' Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Collimated beam focused by a paraboloid. (b) Geometry and parameters of the PC-SIM.

Fig. 2
Fig. 2

(a) Normalized transverse intensity distribution at z = 0 . (b) Normalized axial intensity distribution, (c) FWHM of the central peak versus distance from the SIM–air interface. Calculation parameters are n = 2 , n 2 = 1.44 + 5.23 i , and δ = 1.8 .

Fig. 3
Fig. 3

(a) FWHM of the spot and (b) the intensity of the spot as a function of the structure parameter δ at z = 0 . Solid curve is the case of n = 2 , and the dashed curve is the case of n = 1.8 for n 2 = 1.44 + 5.23 i .

Fig. 4
Fig. 4

Maximum convergence angle θ max , minimum convergence angle θ min , and the difference ( θ max - θ min ) versus the structure parameter δ.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f ( θ ) = 1 1 + cos θ .
r j = r 1 j + r 2 j exp ( 2 i β j ) 1 + r 1 j r 2 j exp ( 2 i β j ) , j = p , b ,
β j = 2 π λ n 2 d cos θ 2 j ,
E ρ ( ρ , z ) = θ min θ max f ( θ ) r p r b t 1 t 2 cos θ sin θ J 1 ( i k n ρ sin θ ) exp ( i k z cos θ ) d θ ,
E z ( ρ , z ) = 2 i θ min θ max f ( θ ) r p r b t 1 t 2 sin θ sin θ J 0 ( i k n ρ sin θ ) exp ( i k z cos θ ) d θ .
θ min = arctan ( 8 δ 16 δ 2 ) ,
θ max = arctan ( δ ) , δ = r h , 0 δ 2 2 ,

Metrics