Abstract

We propose a continuously tunable, dual free spectral range (FSR) photonic microwave notch filter configuration using a high-birefringence linearly chirped fiber Bragg grating (Hi-Bi LCFBG) that is connected in a Sagnac loop using a Hi-Bi coupler. The configuration employs double sideband modulation and can generate two FSRs simultaneously. The larger FSR corresponds to the differential time delay of the Hi-Bi LCFBG and the Hi-Bi pigtails of the coupler; the smaller FSR corresponds to the time delay between the arms of the Sagnac loop. Measured results demonstrate dual FSR, a large notch rejection, and that the FSR is easily tunable by tuning the LCFBG. We also present the filter transfer function for the design. Experimental results agree well with the theoretical analysis.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, D. Paster, and S. Sales, 'Discrete-time optical processing of microwave signals,' J. Lightwave Technol. 23, 702-723 (2005).
    [CrossRef]
  2. D. Paster and J. Capmany, 'Fibre optic tunable transversal filter using laser array and linearly chirped fibre grating,' Electron. Lett. 34, 1684-1685 (1998).
    [CrossRef]
  3. E. H. W. Chan, K. E. Alameh, and J. A. R. Minasian, 'Photonics bandpass filters with high skirt selectivity and stopband attenuation,' J. Lightwave Technol. 20, 1962-1967 (2002).
    [CrossRef]
  4. D. B. Hunter, R. A. Minasian, and P. A. Krug, 'Tunable optical transversal filter based on chirped gratings,' Electron. Lett. 31, 2205-2207 (1995).
    [CrossRef]
  5. A. R. Minasian, 'Photonics signal processing of microwave signals,' IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
    [CrossRef]
  6. W. Zhang, J. A. R. Williams, and I. Bennion, 'Polarization synthesized optical transversal filter employing high birefringence fiber gratings,' IEEE Photon. Technol. Lett. 13, 523-525 (2001).
    [CrossRef]
  7. X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
    [CrossRef]
  8. T. Erdogan, 'Fiber grating spectra,' J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  9. G. Ning, S. Aditya, Y. D. Gong, and P. Shum, 'Tunable photonic microwave filter using fiber grating in a Sagnac loop,' in Asia Pacific Microwave Conference (APMC 2004), New Delhi, India (2004), pp. 209-210.
  10. Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
    [CrossRef]

2006 (1)

A. R. Minasian, 'Photonics signal processing of microwave signals,' IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

2005 (1)

2003 (1)

X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
[CrossRef]

2002 (1)

2001 (2)

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

W. Zhang, J. A. R. Williams, and I. Bennion, 'Polarization synthesized optical transversal filter employing high birefringence fiber gratings,' IEEE Photon. Technol. Lett. 13, 523-525 (2001).
[CrossRef]

1998 (1)

D. Paster and J. Capmany, 'Fibre optic tunable transversal filter using laser array and linearly chirped fibre grating,' Electron. Lett. 34, 1684-1685 (1998).
[CrossRef]

1997 (1)

T. Erdogan, 'Fiber grating spectra,' J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1995 (1)

D. B. Hunter, R. A. Minasian, and P. A. Krug, 'Tunable optical transversal filter based on chirped gratings,' Electron. Lett. 31, 2205-2207 (1995).
[CrossRef]

Aditya, S.

G. Ning, S. Aditya, Y. D. Gong, and P. Shum, 'Tunable photonic microwave filter using fiber grating in a Sagnac loop,' in Asia Pacific Microwave Conference (APMC 2004), New Delhi, India (2004), pp. 209-210.

Alameh, K. E.

Bennion, I.

W. Zhang, J. A. R. Williams, and I. Bennion, 'Polarization synthesized optical transversal filter employing high birefringence fiber gratings,' IEEE Photon. Technol. Lett. 13, 523-525 (2001).
[CrossRef]

Capmany, J.

J. Capmany, B. Ortega, D. Paster, and S. Sales, 'Discrete-time optical processing of microwave signals,' J. Lightwave Technol. 23, 702-723 (2005).
[CrossRef]

D. Paster and J. Capmany, 'Fibre optic tunable transversal filter using laser array and linearly chirped fibre grating,' Electron. Lett. 34, 1684-1685 (1998).
[CrossRef]

Chan, E. H. W.

Ding, L.

X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
[CrossRef]

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Dong, X.

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Erdogan, T.

T. Erdogan, 'Fiber grating spectra,' J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Fang, W.

X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
[CrossRef]

Feng, D.

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Gong, Y. D.

G. Ning, S. Aditya, Y. D. Gong, and P. Shum, 'Tunable photonic microwave filter using fiber grating in a Sagnac loop,' in Asia Pacific Microwave Conference (APMC 2004), New Delhi, India (2004), pp. 209-210.

Hunter, D. B.

D. B. Hunter, R. A. Minasian, and P. A. Krug, 'Tunable optical transversal filter based on chirped gratings,' Electron. Lett. 31, 2205-2207 (1995).
[CrossRef]

Kai, G.

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Krug, P. A.

D. B. Hunter, R. A. Minasian, and P. A. Krug, 'Tunable optical transversal filter based on chirped gratings,' Electron. Lett. 31, 2205-2207 (1995).
[CrossRef]

Liu, N.

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Liu, Z.

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Lu, C.

X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
[CrossRef]

Minasian, A. R.

A. R. Minasian, 'Photonics signal processing of microwave signals,' IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

Minasian, J. A. R.

Minasian, R. A.

D. B. Hunter, R. A. Minasian, and P. A. Krug, 'Tunable optical transversal filter based on chirped gratings,' Electron. Lett. 31, 2205-2207 (1995).
[CrossRef]

Ning, G.

G. Ning, S. Aditya, Y. D. Gong, and P. Shum, 'Tunable photonic microwave filter using fiber grating in a Sagnac loop,' in Asia Pacific Microwave Conference (APMC 2004), New Delhi, India (2004), pp. 209-210.

Ortega, B.

Paster, D.

J. Capmany, B. Ortega, D. Paster, and S. Sales, 'Discrete-time optical processing of microwave signals,' J. Lightwave Technol. 23, 702-723 (2005).
[CrossRef]

D. Paster and J. Capmany, 'Fibre optic tunable transversal filter using laser array and linearly chirped fibre grating,' Electron. Lett. 34, 1684-1685 (1998).
[CrossRef]

Qin, Z.

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Sales, S.

Shum, P.

G. Ning, S. Aditya, Y. D. Gong, and P. Shum, 'Tunable photonic microwave filter using fiber grating in a Sagnac loop,' in Asia Pacific Microwave Conference (APMC 2004), New Delhi, India (2004), pp. 209-210.

Wang, Y. X.

X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
[CrossRef]

Williams, J. A. R.

W. Zhang, J. A. R. Williams, and I. Bennion, 'Polarization synthesized optical transversal filter employing high birefringence fiber gratings,' IEEE Photon. Technol. Lett. 13, 523-525 (2001).
[CrossRef]

Yang, X.

X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
[CrossRef]

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Yi, X.

X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
[CrossRef]

Yuan, S.

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Zeng, Q.

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

Zhang, W.

W. Zhang, J. A. R. Williams, and I. Bennion, 'Polarization synthesized optical transversal filter employing high birefringence fiber gratings,' IEEE Photon. Technol. Lett. 13, 523-525 (2001).
[CrossRef]

Zhong, W. D.

X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
[CrossRef]

Electron. Lett. (2)

D. B. Hunter, R. A. Minasian, and P. A. Krug, 'Tunable optical transversal filter based on chirped gratings,' Electron. Lett. 31, 2205-2207 (1995).
[CrossRef]

D. Paster and J. Capmany, 'Fibre optic tunable transversal filter using laser array and linearly chirped fibre grating,' Electron. Lett. 34, 1684-1685 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

W. Zhang, J. A. R. Williams, and I. Bennion, 'Polarization synthesized optical transversal filter employing high birefringence fiber gratings,' IEEE Photon. Technol. Lett. 13, 523-525 (2001).
[CrossRef]

X. Yi, C. Lu, X. Yang, W. D. Zhong, W. Fang, L. Ding, and Y. X. Wang, 'Continuously tunable microwave photonics filter design using high birefringence linear chirped grating,' IEEE Photon. Technol. Lett. 15, 754-756 (2003).
[CrossRef]

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, and N. Liu, 'Bidirectional grating wavelength shifter with a broad range tunability by using a beam of uniform strength,' IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. R. Minasian, 'Photonics signal processing of microwave signals,' IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Other (1)

G. Ning, S. Aditya, Y. D. Gong, and P. Shum, 'Tunable photonic microwave filter using fiber grating in a Sagnac loop,' in Asia Pacific Microwave Conference (APMC 2004), New Delhi, India (2004), pp. 209-210.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Hi-Bi LCFBG reflectivity for the fast axis and the slow axis.

Fig. 3
Fig. 3

Measured DGD for Hi-Bi LCFBG.

Fig. 4
Fig. 4

(a) Measured filter response showing two simultaneous FSRs. (b) Filter response for the larger FSR measured by disconnecting arm 2 of the Sagnac loop. (c) Measured filter response enlarged 5 GHz .

Fig. 5
Fig. 5

(a) Measured filter response showing two simultaneous FSRs when the operation of the grating is shifted to a wavelength shorter by 0.1 nm . (b) Filter response for the larger FSR, measured by disconnecting arm 2 of the Sagnac loop, when the operation of the grating is shifted to a wavelength shorter by 0.1 nm . (c) Measured filter response enlarged at 5 GHz when the operation of the grating is shifted to a wavelength shorter by 0.1 nm .

Fig. 6
Fig. 6

Measured and calculated (solid line) larger and smaller FSR versus shift in the operating wavelength of the Hi-Bi LCFBG.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H s ( f ) ( ω m ) = R M 2 2 cos ( d ρ ω m 2 λ 2 4 π c ) exp { j [ 2 n eff z c + 2 β s 1 ( f 1 ) L 1 ] ω m } + exp { j [ 2 n eff ( l z ) c + 2 β s 1 ( f 1 ) L 2 ] ω m } ,
H ( ω m ) = H s ( ω m ) + H f ( ω m ) = R M 2 2 cos ( d ρ ω m 2 λ 2 4 π c ) exp [ j ( Δ τ d f + Δ τ d 0 2 ) ω m ] + exp [ j ( Δ τ d f + Δ τ d 0 2 ) ω m ] exp { j [ 2 n eff z c + 2 β f 1 L 1 ] ω m } + exp { j [ 2 n eff ( l z ) c + 2 β f 1 L 2 ] ω m } .

Metrics