Abstract

A recent physiological finding of neural coding for border ownership (BO) that defines the direction of a figure with respect to the border has provided a possible basis for figure–ground segregation. To explore the underlying neural mechanisms of BO, we investigated stimulus configurations that activate BO circuitry through psychophysical investigation of the BO-dependent tilt aftereffect (BO-TAE). Specifically, we examined robustness of the border ownership signal by determining whether the BO-TAE is observed when gestalt factors are broken. The results showed significant BO-TAEs even when a global shape was not explicitly given due to the ambiguity of the contour, suggesting a contour-independent mechanism for BO coding.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Sajda and L. H. Finkel, 'Intermediate-level visual representations and the construction of surface perception,' J. Cogn. Neurosci. 7, 267-291 (1995).
    [CrossRef]
  2. D. Marr, Vision (Freeman, 1982).
  3. H. Zhou, H. S. Friedman, and R. von der Heydt, 'Coding of border ownership in monkey visual cortex,' J. Neurosci. 20, 6594-6611 (2000).
    [PubMed]
  4. V. A. F. Lamme, 'The neurophysiology of figure-ground segregation in primary visual cortex,' J. Neurosci. 15, 1605-1615 (1995).
    [PubMed]
  5. S. Kastner, H. C. Nothdurft, and I. N. Pigarev, 'Neuronal correlates of pop-out in cat striate cortex,' Vision Res. 37, 371-376 (1997).
    [CrossRef] [PubMed]
  6. K. Sakai and H. Nishimura, 'Asymmetric surrounding modulation in the determination of border-ownership,' J. Cogn. Neurosci. 18, 562-579 (2006).
    [CrossRef] [PubMed]
  7. R. von der Heydt, T. Macuda, and F. T. Qiu, 'Border-ownership-dependent tilt aftereffect,' J. Opt. Soc. Am. A 22, 2222-2229 (2005).
    [CrossRef]
  8. B. F. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman & Hall/CRC, 1997).
  9. T. Hesterberg, S. Monaghan, D. S. Moore, A. Clipson, and R. Epstein, 'Bootstrap methods and permutation tests,' in The Practice of Business Statistics (Freeman, 2003), Chap. 18, pp. 39-41.
  10. C. E. Connor, J. L. Gallant, D. C. Preddie, and D. C. Van Essen, 'Responses in area V4 depend on the spatial relationship between stimulus and attention,' J. Neurophysiol. 75, 1306-1308 (1996).
    [PubMed]
  11. C. E. Connor, D. C. Preddie, J. L. Gallant, and D. C. Van Essen, 'Spatial attention effects in macaque area V4,' J. Neurosci. 17, 3201-3214 (1997).
    [PubMed]
  12. T. Sugihara, F. T. Qiu, and R. von der Heydt, 'Figure-ground organization and attention modulation in neurons of monkey area V2,' J. Vision 4, 197a (2004).
    [CrossRef]
  13. H. Nishimura and K. Sakai, 'Determination of border-ownership based on the surround context of contrast,' Neurocomputing 58-60, 843-848 (2004).
    [CrossRef]
  14. H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, 'Surround suppression in primate V1,' J. Neurophysiol. 86, 2011-2028 (2001).
    [PubMed]
  15. M. Ito and H. Komatsu, 'Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,' J. Neurosci. 24, 3313-3324 (2004).
    [CrossRef] [PubMed]
  16. K. Sakai and S. Tanaka, 'Spatial pooling in the second-order structure of cortical complex cells--computational analysis,' Vision Res. 40, 855-871 (2000).
    [CrossRef] [PubMed]
  17. K. Sakai and Y. Hirai, 'Neural grouping and geometric effect in the determination of apparent orientation,' J. Opt. Soc. Am. A 19, 1049-1062 (2002).
    [CrossRef]
  18. B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, 'Early and late mechanisms of surround suppression in striate cortex of macaque,' J. Neurosci. 25, 11666-11675 (2005).
    [CrossRef] [PubMed]
  19. C. Blakemore and F. W. Campbell, 'On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,' J. Physiol. (London) 203, 237-260 (1969).
  20. P. Sajda and K. Baek, 'Integration of form and motion within a generative model of visual cortex,' Neural Networks 17, 809-821 (2004).
    [CrossRef] [PubMed]
  21. K. Baek and P. Sajda, 'Inferring figure-ground using a recurrent integrate-and-fire neural circuit,' IEEE Trans. Neural Syst. Rehabil. Eng. 13, 125-130 (2005).
    [CrossRef] [PubMed]
  22. Z. Li, 'Border ownership from intracortical interactions in visual area V2,' Neuron 47, 143-153 (2005).
    [CrossRef]

2006

K. Sakai and H. Nishimura, 'Asymmetric surrounding modulation in the determination of border-ownership,' J. Cogn. Neurosci. 18, 562-579 (2006).
[CrossRef] [PubMed]

2005

R. von der Heydt, T. Macuda, and F. T. Qiu, 'Border-ownership-dependent tilt aftereffect,' J. Opt. Soc. Am. A 22, 2222-2229 (2005).
[CrossRef]

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, 'Early and late mechanisms of surround suppression in striate cortex of macaque,' J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

K. Baek and P. Sajda, 'Inferring figure-ground using a recurrent integrate-and-fire neural circuit,' IEEE Trans. Neural Syst. Rehabil. Eng. 13, 125-130 (2005).
[CrossRef] [PubMed]

Z. Li, 'Border ownership from intracortical interactions in visual area V2,' Neuron 47, 143-153 (2005).
[CrossRef]

2004

M. Ito and H. Komatsu, 'Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,' J. Neurosci. 24, 3313-3324 (2004).
[CrossRef] [PubMed]

T. Sugihara, F. T. Qiu, and R. von der Heydt, 'Figure-ground organization and attention modulation in neurons of monkey area V2,' J. Vision 4, 197a (2004).
[CrossRef]

H. Nishimura and K. Sakai, 'Determination of border-ownership based on the surround context of contrast,' Neurocomputing 58-60, 843-848 (2004).
[CrossRef]

P. Sajda and K. Baek, 'Integration of form and motion within a generative model of visual cortex,' Neural Networks 17, 809-821 (2004).
[CrossRef] [PubMed]

2002

2001

H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, 'Surround suppression in primate V1,' J. Neurophysiol. 86, 2011-2028 (2001).
[PubMed]

2000

H. Zhou, H. S. Friedman, and R. von der Heydt, 'Coding of border ownership in monkey visual cortex,' J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

K. Sakai and S. Tanaka, 'Spatial pooling in the second-order structure of cortical complex cells--computational analysis,' Vision Res. 40, 855-871 (2000).
[CrossRef] [PubMed]

1997

C. E. Connor, D. C. Preddie, J. L. Gallant, and D. C. Van Essen, 'Spatial attention effects in macaque area V4,' J. Neurosci. 17, 3201-3214 (1997).
[PubMed]

S. Kastner, H. C. Nothdurft, and I. N. Pigarev, 'Neuronal correlates of pop-out in cat striate cortex,' Vision Res. 37, 371-376 (1997).
[CrossRef] [PubMed]

1996

C. E. Connor, J. L. Gallant, D. C. Preddie, and D. C. Van Essen, 'Responses in area V4 depend on the spatial relationship between stimulus and attention,' J. Neurophysiol. 75, 1306-1308 (1996).
[PubMed]

1995

P. Sajda and L. H. Finkel, 'Intermediate-level visual representations and the construction of surface perception,' J. Cogn. Neurosci. 7, 267-291 (1995).
[CrossRef]

V. A. F. Lamme, 'The neurophysiology of figure-ground segregation in primary visual cortex,' J. Neurosci. 15, 1605-1615 (1995).
[PubMed]

1969

C. Blakemore and F. W. Campbell, 'On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,' J. Physiol. (London) 203, 237-260 (1969).

Baek, K.

K. Baek and P. Sajda, 'Inferring figure-ground using a recurrent integrate-and-fire neural circuit,' IEEE Trans. Neural Syst. Rehabil. Eng. 13, 125-130 (2005).
[CrossRef] [PubMed]

P. Sajda and K. Baek, 'Integration of form and motion within a generative model of visual cortex,' Neural Networks 17, 809-821 (2004).
[CrossRef] [PubMed]

Blakemore, C.

C. Blakemore and F. W. Campbell, 'On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,' J. Physiol. (London) 203, 237-260 (1969).

Campbell, F. W.

C. Blakemore and F. W. Campbell, 'On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,' J. Physiol. (London) 203, 237-260 (1969).

Clipson, A.

T. Hesterberg, S. Monaghan, D. S. Moore, A. Clipson, and R. Epstein, 'Bootstrap methods and permutation tests,' in The Practice of Business Statistics (Freeman, 2003), Chap. 18, pp. 39-41.

Connor, C. E.

C. E. Connor, D. C. Preddie, J. L. Gallant, and D. C. Van Essen, 'Spatial attention effects in macaque area V4,' J. Neurosci. 17, 3201-3214 (1997).
[PubMed]

C. E. Connor, J. L. Gallant, D. C. Preddie, and D. C. Van Essen, 'Responses in area V4 depend on the spatial relationship between stimulus and attention,' J. Neurophysiol. 75, 1306-1308 (1996).
[PubMed]

Dhruv, N. T.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, 'Early and late mechanisms of surround suppression in striate cortex of macaque,' J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

Epstein, R.

T. Hesterberg, S. Monaghan, D. S. Moore, A. Clipson, and R. Epstein, 'Bootstrap methods and permutation tests,' in The Practice of Business Statistics (Freeman, 2003), Chap. 18, pp. 39-41.

Finkel, L. H.

P. Sajda and L. H. Finkel, 'Intermediate-level visual representations and the construction of surface perception,' J. Cogn. Neurosci. 7, 267-291 (1995).
[CrossRef]

Friedman, H. S.

H. Zhou, H. S. Friedman, and R. von der Heydt, 'Coding of border ownership in monkey visual cortex,' J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

Gallant, J. L.

C. E. Connor, D. C. Preddie, J. L. Gallant, and D. C. Van Essen, 'Spatial attention effects in macaque area V4,' J. Neurosci. 17, 3201-3214 (1997).
[PubMed]

C. E. Connor, J. L. Gallant, D. C. Preddie, and D. C. Van Essen, 'Responses in area V4 depend on the spatial relationship between stimulus and attention,' J. Neurophysiol. 75, 1306-1308 (1996).
[PubMed]

Grieve, K. L.

H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, 'Surround suppression in primate V1,' J. Neurophysiol. 86, 2011-2028 (2001).
[PubMed]

Hesterberg, T.

T. Hesterberg, S. Monaghan, D. S. Moore, A. Clipson, and R. Epstein, 'Bootstrap methods and permutation tests,' in The Practice of Business Statistics (Freeman, 2003), Chap. 18, pp. 39-41.

Hirai, Y.

Ito, M.

M. Ito and H. Komatsu, 'Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,' J. Neurosci. 24, 3313-3324 (2004).
[CrossRef] [PubMed]

Jones, H. E.

H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, 'Surround suppression in primate V1,' J. Neurophysiol. 86, 2011-2028 (2001).
[PubMed]

Kastner, S.

S. Kastner, H. C. Nothdurft, and I. N. Pigarev, 'Neuronal correlates of pop-out in cat striate cortex,' Vision Res. 37, 371-376 (1997).
[CrossRef] [PubMed]

Komatsu, H.

M. Ito and H. Komatsu, 'Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,' J. Neurosci. 24, 3313-3324 (2004).
[CrossRef] [PubMed]

Lamme, V. A. F.

V. A. F. Lamme, 'The neurophysiology of figure-ground segregation in primary visual cortex,' J. Neurosci. 15, 1605-1615 (1995).
[PubMed]

Lennie, P.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, 'Early and late mechanisms of surround suppression in striate cortex of macaque,' J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

Li, Z.

Z. Li, 'Border ownership from intracortical interactions in visual area V2,' Neuron 47, 143-153 (2005).
[CrossRef]

Macuda, T.

Manly, B. F.

B. F. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman & Hall/CRC, 1997).

Marr, D.

D. Marr, Vision (Freeman, 1982).

Monaghan, S.

T. Hesterberg, S. Monaghan, D. S. Moore, A. Clipson, and R. Epstein, 'Bootstrap methods and permutation tests,' in The Practice of Business Statistics (Freeman, 2003), Chap. 18, pp. 39-41.

Moore, D. S.

T. Hesterberg, S. Monaghan, D. S. Moore, A. Clipson, and R. Epstein, 'Bootstrap methods and permutation tests,' in The Practice of Business Statistics (Freeman, 2003), Chap. 18, pp. 39-41.

Nishimura, H.

K. Sakai and H. Nishimura, 'Asymmetric surrounding modulation in the determination of border-ownership,' J. Cogn. Neurosci. 18, 562-579 (2006).
[CrossRef] [PubMed]

H. Nishimura and K. Sakai, 'Determination of border-ownership based on the surround context of contrast,' Neurocomputing 58-60, 843-848 (2004).
[CrossRef]

Nothdurft, H. C.

S. Kastner, H. C. Nothdurft, and I. N. Pigarev, 'Neuronal correlates of pop-out in cat striate cortex,' Vision Res. 37, 371-376 (1997).
[CrossRef] [PubMed]

Pigarev, I. N.

S. Kastner, H. C. Nothdurft, and I. N. Pigarev, 'Neuronal correlates of pop-out in cat striate cortex,' Vision Res. 37, 371-376 (1997).
[CrossRef] [PubMed]

Preddie, D. C.

C. E. Connor, D. C. Preddie, J. L. Gallant, and D. C. Van Essen, 'Spatial attention effects in macaque area V4,' J. Neurosci. 17, 3201-3214 (1997).
[PubMed]

C. E. Connor, J. L. Gallant, D. C. Preddie, and D. C. Van Essen, 'Responses in area V4 depend on the spatial relationship between stimulus and attention,' J. Neurophysiol. 75, 1306-1308 (1996).
[PubMed]

Qiu, F. T.

R. von der Heydt, T. Macuda, and F. T. Qiu, 'Border-ownership-dependent tilt aftereffect,' J. Opt. Soc. Am. A 22, 2222-2229 (2005).
[CrossRef]

T. Sugihara, F. T. Qiu, and R. von der Heydt, 'Figure-ground organization and attention modulation in neurons of monkey area V2,' J. Vision 4, 197a (2004).
[CrossRef]

Sajda, P.

K. Baek and P. Sajda, 'Inferring figure-ground using a recurrent integrate-and-fire neural circuit,' IEEE Trans. Neural Syst. Rehabil. Eng. 13, 125-130 (2005).
[CrossRef] [PubMed]

P. Sajda and K. Baek, 'Integration of form and motion within a generative model of visual cortex,' Neural Networks 17, 809-821 (2004).
[CrossRef] [PubMed]

P. Sajda and L. H. Finkel, 'Intermediate-level visual representations and the construction of surface perception,' J. Cogn. Neurosci. 7, 267-291 (1995).
[CrossRef]

Sakai, K.

K. Sakai and H. Nishimura, 'Asymmetric surrounding modulation in the determination of border-ownership,' J. Cogn. Neurosci. 18, 562-579 (2006).
[CrossRef] [PubMed]

H. Nishimura and K. Sakai, 'Determination of border-ownership based on the surround context of contrast,' Neurocomputing 58-60, 843-848 (2004).
[CrossRef]

K. Sakai and Y. Hirai, 'Neural grouping and geometric effect in the determination of apparent orientation,' J. Opt. Soc. Am. A 19, 1049-1062 (2002).
[CrossRef]

K. Sakai and S. Tanaka, 'Spatial pooling in the second-order structure of cortical complex cells--computational analysis,' Vision Res. 40, 855-871 (2000).
[CrossRef] [PubMed]

Sillito, A. M.

H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, 'Surround suppression in primate V1,' J. Neurophysiol. 86, 2011-2028 (2001).
[PubMed]

Solomon, S. G.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, 'Early and late mechanisms of surround suppression in striate cortex of macaque,' J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

Sugihara, T.

T. Sugihara, F. T. Qiu, and R. von der Heydt, 'Figure-ground organization and attention modulation in neurons of monkey area V2,' J. Vision 4, 197a (2004).
[CrossRef]

Tailby, C.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, 'Early and late mechanisms of surround suppression in striate cortex of macaque,' J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

Tanaka, S.

K. Sakai and S. Tanaka, 'Spatial pooling in the second-order structure of cortical complex cells--computational analysis,' Vision Res. 40, 855-871 (2000).
[CrossRef] [PubMed]

Van Essen, D. C.

C. E. Connor, D. C. Preddie, J. L. Gallant, and D. C. Van Essen, 'Spatial attention effects in macaque area V4,' J. Neurosci. 17, 3201-3214 (1997).
[PubMed]

C. E. Connor, J. L. Gallant, D. C. Preddie, and D. C. Van Essen, 'Responses in area V4 depend on the spatial relationship between stimulus and attention,' J. Neurophysiol. 75, 1306-1308 (1996).
[PubMed]

von der Heydt, R.

R. von der Heydt, T. Macuda, and F. T. Qiu, 'Border-ownership-dependent tilt aftereffect,' J. Opt. Soc. Am. A 22, 2222-2229 (2005).
[CrossRef]

T. Sugihara, F. T. Qiu, and R. von der Heydt, 'Figure-ground organization and attention modulation in neurons of monkey area V2,' J. Vision 4, 197a (2004).
[CrossRef]

H. Zhou, H. S. Friedman, and R. von der Heydt, 'Coding of border ownership in monkey visual cortex,' J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

Wang, W.

H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, 'Surround suppression in primate V1,' J. Neurophysiol. 86, 2011-2028 (2001).
[PubMed]

Webb, B. S.

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, 'Early and late mechanisms of surround suppression in striate cortex of macaque,' J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

Zhou, H.

H. Zhou, H. S. Friedman, and R. von der Heydt, 'Coding of border ownership in monkey visual cortex,' J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

IEEE Trans. Neural Syst. Rehabil. Eng.

K. Baek and P. Sajda, 'Inferring figure-ground using a recurrent integrate-and-fire neural circuit,' IEEE Trans. Neural Syst. Rehabil. Eng. 13, 125-130 (2005).
[CrossRef] [PubMed]

J. Cogn. Neurosci.

P. Sajda and L. H. Finkel, 'Intermediate-level visual representations and the construction of surface perception,' J. Cogn. Neurosci. 7, 267-291 (1995).
[CrossRef]

K. Sakai and H. Nishimura, 'Asymmetric surrounding modulation in the determination of border-ownership,' J. Cogn. Neurosci. 18, 562-579 (2006).
[CrossRef] [PubMed]

J. Neurophysiol.

C. E. Connor, J. L. Gallant, D. C. Preddie, and D. C. Van Essen, 'Responses in area V4 depend on the spatial relationship between stimulus and attention,' J. Neurophysiol. 75, 1306-1308 (1996).
[PubMed]

H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, 'Surround suppression in primate V1,' J. Neurophysiol. 86, 2011-2028 (2001).
[PubMed]

J. Neurosci.

M. Ito and H. Komatsu, 'Representation of angles embedded within contour stimuli in area V2 of macaque monkeys,' J. Neurosci. 24, 3313-3324 (2004).
[CrossRef] [PubMed]

C. E. Connor, D. C. Preddie, J. L. Gallant, and D. C. Van Essen, 'Spatial attention effects in macaque area V4,' J. Neurosci. 17, 3201-3214 (1997).
[PubMed]

B. S. Webb, N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie, 'Early and late mechanisms of surround suppression in striate cortex of macaque,' J. Neurosci. 25, 11666-11675 (2005).
[CrossRef] [PubMed]

H. Zhou, H. S. Friedman, and R. von der Heydt, 'Coding of border ownership in monkey visual cortex,' J. Neurosci. 20, 6594-6611 (2000).
[PubMed]

V. A. F. Lamme, 'The neurophysiology of figure-ground segregation in primary visual cortex,' J. Neurosci. 15, 1605-1615 (1995).
[PubMed]

J. Opt. Soc. Am. A

J. Physiol. (London)

C. Blakemore and F. W. Campbell, 'On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images,' J. Physiol. (London) 203, 237-260 (1969).

J. Vision

T. Sugihara, F. T. Qiu, and R. von der Heydt, 'Figure-ground organization and attention modulation in neurons of monkey area V2,' J. Vision 4, 197a (2004).
[CrossRef]

Neural Networks

P. Sajda and K. Baek, 'Integration of form and motion within a generative model of visual cortex,' Neural Networks 17, 809-821 (2004).
[CrossRef] [PubMed]

Neurocomputing

H. Nishimura and K. Sakai, 'Determination of border-ownership based on the surround context of contrast,' Neurocomputing 58-60, 843-848 (2004).
[CrossRef]

Neuron

Z. Li, 'Border ownership from intracortical interactions in visual area V2,' Neuron 47, 143-153 (2005).
[CrossRef]

Vision Res.

K. Sakai and S. Tanaka, 'Spatial pooling in the second-order structure of cortical complex cells--computational analysis,' Vision Res. 40, 855-871 (2000).
[CrossRef] [PubMed]

S. Kastner, H. C. Nothdurft, and I. N. Pigarev, 'Neuronal correlates of pop-out in cat striate cortex,' Vision Res. 37, 371-376 (1997).
[CrossRef] [PubMed]

Other

D. Marr, Vision (Freeman, 1982).

B. F. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman & Hall/CRC, 1997).

T. Hesterberg, S. Monaghan, D. S. Moore, A. Clipson, and R. Epstein, 'Bootstrap methods and permutation tests,' in The Practice of Business Statistics (Freeman, 2003), Chap. 18, pp. 39-41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental procedure. Left: Stimulus configuration during the adaptation phase. Midpoint of the tilted edge (15°) of a trapezoid was situated at 0.86 arc deg beside a fixation aid (indicated by a small black dot). Two trapezoids were shown alternatively for 500 ms each, and 80 pairs were presented in total (1R, 1L, …, 80L). Right: Stimulus configuration during the test phase. A square (probe stimulus) was shown on the left or right side of the adapted location for 200 ms each (first 1L and 1R). The range of orientation of the vertical bar at the adapted location varied randomly within ± 2 ° at intervals of 0.2°. Subjects were asked to report to which side the vertical bar of the square at the adapted location appeared tilted. In the test phase, adaptation with four pairs of trapezoids (1L, 1R, …, 4R) followed the two probes.

Fig. 2
Fig. 2

Probe stimuli for TAE estimation in Experiment 1. Inset on right: Parameter l (left) represents the ratio of the horizontal bar with respect to its original length ( 5.0 arc deg ) and α represents the rotation (right). Left: Two variants of the probe stimulus were formed by either shortening the length of horizontal bars (first row) or by rotating horizontal lines (second and third rows). The original square is shown at the upper-left corner in this panel with a fixation aid (black dot). The length of the horizontal bars was varied between 0.0 and 1.0 with respect to the original with an increment of 0.2 (first and second rows). The orientation of horizontal lines was 0°, 15°, or 75° from horizontal as shown in the first, second, and third row, respectively. All stimuli, except that shown at the bottom-left corner, are those shown to the right side. The stimulus shown to the left side forms the mirror symmetric image to that shown on the right side, with respect to the vertical bar proximal to the fixation aid. An example is shown at the bottom-left corner.

Fig. 3
Fig. 3

Estimated BO-TAE as a function of the ratio of the horizontal bar length to the original length. Three types of open icons with distinct connecting lines identify the subjects. Solid circles show mean BO-TAE among the three subjects, with error bars indicating corresponding 95% confidence intervals obtained by the bootstrap method. The orientation of the test horizontal bar was (a) 0° and (b) 15°. The BO-TAE for a completed square is shown where the abscissa is one. A star icon at the right bottom corner of (a) represents the result for attention experiment (Experiment 3). The mean BO-TAEs among three subjects for the stimuli with narrow edges (circle icon), a wide distal edge (triangle), and a wide proximal edge (star) are shown where the abscissa is 0 in panel (b), with error bars indicating corresponding 95% confidence intervals.

Fig. 4
Fig. 4

(a) Probe stimuli for the measurement of BO-TAE with variations of a vertical bar (Experiment 2). The ratio of the length of the vertical bar to the original was 0.6. The orientations of the vertical bar ( α ) were 45° and 90°. Including a no-vertical-bar condition, there were three conditions in total. (b) Measured BO-TAE as a function of vertical slant. Three types of open icons identify the subjects. Solid circles show mean BO-TAE among the three subjects with error bars indicating corresponding 95% confidence intervals obtained by the bootstrap method. Note that data at “No vertical bar” indicate the results for the no-vertical-bar condition.

Tables (1)

Tables Icon

Table 1 Mean and 95% Confidence Intervals of BO-TAE Estimated by the Bootstrap Method for Tilt ( α ) of 0°, 15°, and 75° a

Metrics