Abstract

Single-exposure on-line (SEOL) digital holography is a recently proposed technique for monitoring, visualization, and recognition of three-dimensional (3D) objects. In contrast to traditional multiexposure on-line digital holography, it uses only one exposure, which makes it particularly suitable for imaging and recognizing moving micro-organisms. However, the cost of using only one exposure is the superposition of a conjugate image on the desired reconstructed image. The influence of the conjugate image on the visualization and recognition performance is investigated. The conditions for which the cross-talk noise induced by the conjugate image is negligible are derived. It is demonstrated that with conditions common in imaging of microscopic 3D biological objects, SEOL digital holography is highly tolerant of cross-talk noise induced by the conjugate image.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, 'Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,' Opt. Express 13, 4402-4506 (2005).
    [CrossRef]
  2. B. Javidi and D. Kim, 'Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,' Opt. Express 12, 5539-5548 (2004).
    [CrossRef] [PubMed]
  3. B. Javidi and D. Kim, 'Three-dimensional-object recognition by use of single-exposure on-axis digital holography,' Opt. Lett. 30, 236-238 (2005).
    [CrossRef] [PubMed]
  4. W. Goodman and R. W. Lawrence, 'Digital image formation from electronically detected holograms,' Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  5. A. Macovski, S. D. Ramsey, and L. F. Schaefer, 'Time-lapse interferometry and contouring using television systems,' Appl. Opt. 10, 2722-2727 (1971).
    [CrossRef] [PubMed]
  6. K. Creath, 'Phase-shifting speckle interferometry,' Appl. Opt. 24, 3053-3058 (1985).
    [CrossRef] [PubMed]
  7. L. Onural and P. D. Scott, 'Digital decoding of in-line holograms,' Opt. Eng. 26, 1124-1132 (1987).
  8. U. Schnars and W. P. O. Jüptner, 'Direct recording of holograms by a CCD target and numerical reconstruction,' Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  9. G. Pedrini and H. J. Tiziani, 'Short-coherence digital microscopy by use of a lensless holographic imaging system,' Appl. Opt. 41, 4489-4496 (2002).
    [CrossRef] [PubMed]
  10. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, 'Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,' Appl. Opt. 41, 6187-6192 (2002).
    [CrossRef] [PubMed]
  11. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, 'Compression of digital holograms for three-dimensional object reconstruction and recognition,' Appl. Opt. 41, 4124-4132 (2002).
    [CrossRef] [PubMed]
  12. T.Kreis, ed., Handbook of Holographic Interferometry (Wiley-VCH, 2005).
  13. T. Zhang and I. Yamaguchi, 'Three-dimensional microscopy with phase-shifting digital holography,' Opt. Lett. 23, 1221-1223 (1998).
    [CrossRef]
  14. A. Stern and B. Javidi, 'Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields,' J. Opt. Soc. Am. A 23, 1227-1235 (2006).
    [CrossRef]
  15. E. Wigner, 'On the quantum correction for thermodynamic equilibrium,' Phys. Rev. 40, 749-759 (1932).
    [CrossRef]
  16. M. J. Bastiaans, 'Wigner distribution function and its application to first-order optics,' J. Opt. Soc. Am. 69, 1710-1716 (1979).
    [CrossRef]
  17. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, 'Space-bandwidth product of optical signals and systems,' J. Opt. Soc. Am. A 13, 470-473 (1996).
    [CrossRef]
  18. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001), pp. 88-92.
  19. A. W. Lohmann, 'Image rotation, Wigner distribution, and fractional Fourier transform,' J. Opt. Soc. Am. A 10, 2181-2186 (1993).
    [CrossRef]
  20. A. Stern and B. Javidi, 'Sampling in the light of Wigner distribution,' J. Opt. Soc. Am. A 21, 360-366 (2004).
    [CrossRef]
  21. A. Stern and B. Javidi, 'Sampling in the light of Wigner distribution: errata,' J. Opt. Soc. Am. A 21, 2038 (2004).
    [CrossRef]
  22. B. Javidi and E. Tajahuerce, 'Three-dimensional object recognition by use of digital holography,' Opt. Lett. 25, 610-612 (2000).
    [CrossRef]
  23. Y. Frauel, E. Tajahuerce, M. A. Castro, and B. Javidi, 'Distortion-tolerant 3D object recognition using digital holography,' Appl. Opt. 40, 3887-3893 (2001).
    [CrossRef]
  24. S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. (Academic, 1999).

2006 (1)

2005 (2)

B. Javidi and D. Kim, 'Three-dimensional-object recognition by use of single-exposure on-axis digital holography,' Opt. Lett. 30, 236-238 (2005).
[CrossRef] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, 'Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,' Opt. Express 13, 4402-4506 (2005).
[CrossRef]

2004 (3)

2002 (3)

2001 (1)

2000 (1)

1998 (1)

1996 (1)

1994 (1)

1993 (1)

1987 (1)

L. Onural and P. D. Scott, 'Digital decoding of in-line holograms,' Opt. Eng. 26, 1124-1132 (1987).

1985 (1)

1979 (1)

1971 (1)

1967 (1)

W. Goodman and R. W. Lawrence, 'Digital image formation from electronically detected holograms,' Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

1932 (1)

E. Wigner, 'On the quantum correction for thermodynamic equilibrium,' Phys. Rev. 40, 749-759 (1932).
[CrossRef]

Bastiaans, M. J.

Bertaux, N.

Carapezza, E.

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, 'Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,' Opt. Express 13, 4402-4506 (2005).
[CrossRef]

Castro, M. A.

Creath, K.

Dorsch, R. G.

Ferreira, C.

Frauel, Y.

Goodman, W.

W. Goodman and R. W. Lawrence, 'Digital image formation from electronically detected holograms,' Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Javidi, B.

A. Stern and B. Javidi, 'Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields,' J. Opt. Soc. Am. A 23, 1227-1235 (2006).
[CrossRef]

B. Javidi and D. Kim, 'Three-dimensional-object recognition by use of single-exposure on-axis digital holography,' Opt. Lett. 30, 236-238 (2005).
[CrossRef] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, 'Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,' Opt. Express 13, 4402-4506 (2005).
[CrossRef]

A. Stern and B. Javidi, 'Sampling in the light of Wigner distribution: errata,' J. Opt. Soc. Am. A 21, 2038 (2004).
[CrossRef]

A. Stern and B. Javidi, 'Sampling in the light of Wigner distribution,' J. Opt. Soc. Am. A 21, 360-366 (2004).
[CrossRef]

B. Javidi and D. Kim, 'Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,' Opt. Express 12, 5539-5548 (2004).
[CrossRef] [PubMed]

J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, 'Compression of digital holograms for three-dimensional object reconstruction and recognition,' Appl. Opt. 41, 4124-4132 (2002).
[CrossRef] [PubMed]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, 'Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,' Appl. Opt. 41, 6187-6192 (2002).
[CrossRef] [PubMed]

Y. Frauel, E. Tajahuerce, M. A. Castro, and B. Javidi, 'Distortion-tolerant 3D object recognition using digital holography,' Appl. Opt. 40, 3887-3893 (2001).
[CrossRef]

B. Javidi and E. Tajahuerce, 'Three-dimensional object recognition by use of digital holography,' Opt. Lett. 25, 610-612 (2000).
[CrossRef]

Jüptner, W. P. O.

Kim, D.

Kutay, M. A.

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001), pp. 88-92.

Lawrence, R. W.

W. Goodman and R. W. Lawrence, 'Digital image formation from electronically detected holograms,' Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Lohmann, A. W.

Macovski, A.

Mallat, S.

S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. (Academic, 1999).

Matoba, O.

Mendlovic, D.

Moon, I.

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, 'Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,' Opt. Express 13, 4402-4506 (2005).
[CrossRef]

Naughton, J.

Naughton, T. J.

Onural, L.

L. Onural and P. D. Scott, 'Digital decoding of in-line holograms,' Opt. Eng. 26, 1124-1132 (1987).

Ozaktas, H. M.

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001), pp. 88-92.

Pedrini, G.

Ramsey, S. D.

Schaefer, L. F.

Schnars, U.

Scott, P. D.

L. Onural and P. D. Scott, 'Digital decoding of in-line holograms,' Opt. Eng. 26, 1124-1132 (1987).

Stern, A.

Tajahuerce, E.

Tiziani, H. J.

Wigner, E.

E. Wigner, 'On the quantum correction for thermodynamic equilibrium,' Phys. Rev. 40, 749-759 (1932).
[CrossRef]

Yamaguchi, I.

Yeom, S.

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, 'Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,' Opt. Express 13, 4402-4506 (2005).
[CrossRef]

Zalevsky, Z.

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, 'Space-bandwidth product of optical signals and systems,' J. Opt. Soc. Am. A 13, 470-473 (1996).
[CrossRef]

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001), pp. 88-92.

Zhang, T.

Appl. Opt. (7)

Appl. Phys. Lett. (1)

W. Goodman and R. W. Lawrence, 'Digital image formation from electronically detected holograms,' Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

Opt. Eng. (1)

L. Onural and P. D. Scott, 'Digital decoding of in-line holograms,' Opt. Eng. 26, 1124-1132 (1987).

Opt. Express (2)

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, 'Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,' Opt. Express 13, 4402-4506 (2005).
[CrossRef]

B. Javidi and D. Kim, 'Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,' Opt. Express 12, 5539-5548 (2004).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. (1)

E. Wigner, 'On the quantum correction for thermodynamic equilibrium,' Phys. Rev. 40, 749-759 (1932).
[CrossRef]

Other (3)

S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. (Academic, 1999).

T.Kreis, ed., Handbook of Holographic Interferometry (Wiley-VCH, 2005).

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001), pp. 88-92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic description of SEOL digital holographic microscopy. BS1, BS2, beam splitters; M1, M2, mirrors; MO, microscope objective.

Fig. 2
Fig. 2

Coordinate systems of the microscope objective imaging plane and of the hologram plane.

Fig. 3
Fig. 3

Experimental results for biological samples (sphacelaria algae) by use of a × 10 microscope objective: (a) sphacelaria’s two-dimentional image; (b) sphacelaria’s reconstructed images by use of SEOL digital holography with a single hologram recording at distance d = 180 mm , (c) sphacelaria’s reconstructed image at a distance of 180 mm using phase-shifting on-line digital holography.

Fig. 4
Fig. 4

(a) Space–bandwidth product [ S W ( x , ν ) ] of the object U 0 ( x ) . (b) The space–bandwidth product of the object CFA U H ( x ) at the hologram plane. (c) The space–bandwidth product S W z ( x , ν ) of the recorded field (shaded) is limited by the sensor size L CCD . (d) Space–bandwidth product of the IFRT of the recorded field. The maximum true reconstructed frequency is B ν R .

Fig. 5
Fig. 5

(a) Space–bandwidth product [ S W ( x , ν ) ] of the object U h ( x ) . It consists of the phase-space component of U h (solid border line) and the phase-space component due to the conjugate term U h * (dashed-border line). (b) The space–bandwidth product of the IFRT of U h . The overlapping area of the IFRT of U h and U h * (shaded parallelogram at the origin) causes the cross-talk noise in the reconstructed 3D image.

Fig. 6
Fig. 6

Space–bandwidth product [ S W ( x , ν ) ] of the reconstructed field [enlargement of Fig. 4b]. The dashed grid represents the space–spatial-frequency tilling of the discrete wavelet transform. If ν CT B ν , then the cross talk due to the conjugate image is encoded only in the low-frequency (high-scale) wavelet coefficients that do not carry important information for recognition.

Tables (1)

Tables Icon

Table 1 Conditions of the Experiment in Ref. [1]

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H ( x , y ) = U H ( x , y ) 2 + U R ( x , y ) 2 + U H * ( x , y ) U R ( x , y ) + U H ( x , y ) U R * ( x , y ) = [ A H ( x , y ) ] 2 + A R 2 + 2 A R A H cos [ Φ R ( x , y ) φ R ] ,
A R U h ( x , y ) U H * ( x , y ) U R ( x , y ) + U H ( x , y ) U R * ( x , y ) = A R U h * ( x , y ) + U h ( x , y ) ,
U h ( x , y ) = [ H ( x , y ) A H ( x , y ) 2 A R 2 ] A R ,
W u 0 ( x , ν ) = u 0 ( x + x 2 ) u 0 * ( x x 2 ) e j 2 π x ν d x .
W U h ( x , ν ) = W U o ( x λ d ν , ν ) ,
B ν R = L CCD M B X λ d .
1 Δ M B x λ d ,
B ν = min ( B ν M , B ν R ) .
ν CT = M B x 2 λ d .
S W R S W OL = ( M B x ) ( B ν ) ( M B x ) ( ν CT ) = min ( B ν M , B ν R ) M B x 2 λ d = min [ 2 λ d B ν M 2 B x , 2 ( L CCD M B x 1 ) ] .

Metrics