Abstract

Within the framework of the generalized Lorenz–Mie theory (GLMT), the incident shaped beam of an arbitrary orientation and location is expanded in terms of the spheroidal vector wave functions in given spheroidal coordinates. The beam shape coefficients (BSCs) in spheroidal coordinates are computed by the quadrature method. The classical localization approximation method for BSC evaluation is found to be inapplicable when the Cartesian coordinates of the beam and the particle are not parallel to each other. Once they are parallel, all the symmetry relationships existing for the BSCs in spherical coordinates (spherical BSCs) [J. Opt. Soc. Am. A 11, 1812 (1994) ] still pertain to the BSCs in spheroidal coordinates (spheroidal BSCs). In addition, the spheroidal BSCs computed by our method are verified by comparing them with those evaluated by Asano and Yamamoto for plane wave incidence [Appl. Opt. 14, 29 (1975) ]. Furthermore, formulas are given for field reconstruction from the spheroidal BSCs, and consistency is found between the original incident fields and the reconstructed ones.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (73)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription