Abstract

A peak of the detected fluorescence rate per molecule has recently been observed in experiments of fluorescence correlation spectroscopy carried out on subwavelength apertures in metallic screens, a phenomenon that appears at a diameter-to-wavelength ratio below the fundamental mode cutoff. Although the origin of the resonant transmission through a subwavelength aperture has been well explained in terms of excitation of plasmon surface modes on the aperture ridge, the origin of the maximum that occurs at a radius-to-wavelength ratio smaller than 14 was not clear. Using a rigorous electromagnetic theory of light diffraction in cylindrical geometry, we show that it is linked to the appearance of the fundamental mode propagating inside the aperture. We obtain good agreement between the theoretical and the experimental results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through sub-wavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  4. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  5. L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
    [CrossRef] [PubMed]
  6. A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
    [CrossRef]
  7. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
    [CrossRef]
  8. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Transmission of light through small elliptical apertures," Opt. Express 12, 2631-2648 (2004).
    [CrossRef] [PubMed]
  9. E. Popov, N. Bonod, M. Nevière, H. Rigneault, P. F. Lenne, and P. Chaumet, "Surface plasmon excitation on a single subwavelength hole in a metallic sheet," Appl. Opt. 44, 2332-2337 (2005).
    [CrossRef] [PubMed]
  10. E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Transmission through single apertures," Opt. Commun. 255, 338-348 (2005).
    [CrossRef]
  11. R. Gordon and A. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
    [CrossRef] [PubMed]
  12. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
    [CrossRef] [PubMed]
  13. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
    [CrossRef] [PubMed]
  14. K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
    [CrossRef]
  15. J. B. Edel, M. Wu, B. Baird, and H. G. Craighead, "High spatial resolution observation of single molecule dynamics in living cell membranes," Biophys. J. 88, L43-L45 (2005).
    [CrossRef] [PubMed]
  16. J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. F. Lenne, "Single-fiuorophore diffusion in a lipid membrane over a subwavelength aperture," J. Biol. Phys. 32, SN1-SN4 (2006).
    [CrossRef] [PubMed]
  17. Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003).
    [CrossRef] [PubMed]
  18. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15, 1368-1374 (2004).
    [CrossRef]
  19. Y. Liu, F. Mahdavi, and S. Blair, "Enhanced fluorescence transduction properties of metallic nanocavity arrays," IEEE J. Sel. Top. Quantum Electron. 11, 778-784 (2005).
    [CrossRef]
  20. A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005).
    [CrossRef] [PubMed]
  21. J. Wenger, P. F. Lenne, E. Popov, and H. Rigneault, "Single molecule fluorescence in rectangular nano-apertures," Opt. Express 13, 7035-7044 (2005).
    [CrossRef] [PubMed]
  22. N. Bonod, E. Popov, and M. Nevière, "Differential theory of diffraction by finite cylindrical objects," J. Opt. Soc. Am. A 22, 481-490 (2005).
    [CrossRef]
  23. R. Rigler, U. Mets, J. Windengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low-background--analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
    [CrossRef]
  24. E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, "Optimization of plasmon excitation at structured apertures," Appl. Opt. 44, 6141-6154 (2005).
    [CrossRef] [PubMed]
  25. A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  26. S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588-1590 (2002).
    [CrossRef]
  27. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901-1-103901-4 (2005).
    [CrossRef]
  28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998), p. 366.
  29. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-402 (1902).
  30. R. Petit, ed., Electromagnetic Theory of Gratings (Springer, 1980), Chap. 5.
    [CrossRef]
  31. D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A.D.Boardman, ed.(Wiley, 1982), Chap. 17.
  32. E. Popov, "Light diffraction by relief gratings: macro and microscopic point of view," in Progress in Optics, Vol. XXXIIP.Wolf, ed. (Elsevier, 1993), Chap. 2.
    [CrossRef]
  33. M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
    [CrossRef]
  34. E. Popov and L. Tsonev, "Total absorption of light by metallic gratings and energy flow distribution," Surf. Sci. 230, 290-294 (1990).
    [CrossRef]

2006 (1)

J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. F. Lenne, "Single-fiuorophore diffusion in a lipid membrane over a subwavelength aperture," J. Biol. Phys. 32, SN1-SN4 (2006).
[CrossRef] [PubMed]

2005 (12)

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

J. B. Edel, M. Wu, B. Baird, and H. G. Craighead, "High spatial resolution observation of single molecule dynamics in living cell membranes," Biophys. J. 88, L43-L45 (2005).
[CrossRef] [PubMed]

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P. F. Lenne, and P. Chaumet, "Surface plasmon excitation on a single subwavelength hole in a metallic sheet," Appl. Opt. 44, 2332-2337 (2005).
[CrossRef] [PubMed]

E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Transmission through single apertures," Opt. Commun. 255, 338-348 (2005).
[CrossRef]

R. Gordon and A. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
[CrossRef] [PubMed]

Y. Liu, F. Mahdavi, and S. Blair, "Enhanced fluorescence transduction properties of metallic nanocavity arrays," IEEE J. Sel. Top. Quantum Electron. 11, 778-784 (2005).
[CrossRef]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005).
[CrossRef] [PubMed]

J. Wenger, P. F. Lenne, E. Popov, and H. Rigneault, "Single molecule fluorescence in rectangular nano-apertures," Opt. Express 13, 7035-7044 (2005).
[CrossRef] [PubMed]

N. Bonod, E. Popov, and M. Nevière, "Differential theory of diffraction by finite cylindrical objects," J. Opt. Soc. Am. A 22, 481-490 (2005).
[CrossRef]

E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, "Optimization of plasmon excitation at structured apertures," Appl. Opt. 44, 6141-6154 (2005).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901-1-103901-4 (2005).
[CrossRef]

2004 (3)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

R. Zakharian, M. Mansuripur, and J. V. Moloney, "Transmission of light through small elliptical apertures," Opt. Express 12, 2631-2648 (2004).
[CrossRef] [PubMed]

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

2003 (2)

Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003).
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588-1590 (2002).
[CrossRef]

2001 (3)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

1998 (3)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through sub-wavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998), p. 366.

1993 (2)

R. Rigler, U. Mets, J. Windengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low-background--analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

E. Popov, "Light diffraction by relief gratings: macro and microscopic point of view," in Progress in Optics, Vol. XXXIIP.Wolf, ed. (Elsevier, 1993), Chap. 2.
[CrossRef]

1990 (1)

E. Popov and L. Tsonev, "Total absorption of light by metallic gratings and energy flow distribution," Surf. Sci. 230, 290-294 (1990).
[CrossRef]

1983 (1)

A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

1982 (1)

D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A.D.Boardman, ed.(Wiley, 1982), Chap. 17.

1980 (1)

R. Petit, ed., Electromagnetic Theory of Gratings (Springer, 1980), Chap. 5.
[CrossRef]

1976 (1)

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
[CrossRef]

1902 (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-402 (1902).

Baird, B.

J. B. Edel, M. Wu, B. Baird, and H. G. Craighead, "High spatial resolution observation of single molecule dynamics in living cell membranes," Biophys. J. 88, L43-L45 (2005).
[CrossRef] [PubMed]

Bishop, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Blair, S.

Y. Liu, F. Mahdavi, and S. Blair, "Enhanced fluorescence transduction properties of metallic nanocavity arrays," IEEE J. Sel. Top. Quantum Electron. 11, 778-784 (2005).
[CrossRef]

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003).
[CrossRef] [PubMed]

Bonod, N.

Boyer, P.

E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Transmission through single apertures," Opt. Commun. 255, 338-348 (2005).
[CrossRef]

Brolo, A.

Brolo, A. G.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005).
[CrossRef] [PubMed]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Chaumet, P.

Cox, E. C.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

Craighead, H. G.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

J. B. Edel, M. Wu, B. Baird, and H. G. Craighead, "High spatial resolution observation of single molecule dynamics in living cell membranes," Biophys. J. 88, L43-L45 (2005).
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

de Fornel, F.

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Dintinger, J.

J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. F. Lenne, "Single-fiuorophore diffusion in a lipid membrane over a subwavelength aperture," J. Biol. Phys. 32, SN1-SN4 (2006).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through sub-wavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Edel, J. B.

J. B. Edel, M. Wu, B. Baird, and H. G. Craighead, "High spatial resolution observation of single molecule dynamics in living cell membranes," Biophys. J. 88, L43-L45 (2005).
[CrossRef] [PubMed]

Enoch, S.

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588-1590 (2002).
[CrossRef]

Fehrembach, A.-L.

Foquet, M.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901-1-103901-4 (2005).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through sub-wavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Gordon, R.

R. Gordon and A. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005).
[CrossRef] [PubMed]

Gralak, B.

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588-1590 (2002).
[CrossRef]

Grillot, F.

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through sub-wavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Guo, L.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

Herron, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Hutley, M. C.

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998), p. 366.

Kask, P.

R. Rigler, U. Mets, J. Windengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low-background--analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005).
[CrossRef] [PubMed]

Kima, T. J.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Kwok, S. C.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005).
[CrossRef] [PubMed]

Lenne, P. F.

J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. F. Lenne, "Single-fiuorophore diffusion in a lipid membrane over a subwavelength aperture," J. Biol. Phys. 32, SN1-SN4 (2006).
[CrossRef] [PubMed]

J. Wenger, P. F. Lenne, E. Popov, and H. Rigneault, "Single molecule fluorescence in rectangular nano-apertures," Opt. Express 13, 7035-7044 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P. F. Lenne, and P. Chaumet, "Surface plasmon excitation on a single subwavelength hole in a metallic sheet," Appl. Opt. 44, 2332-2337 (2005).
[CrossRef] [PubMed]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through sub-wavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, F. Mahdavi, and S. Blair, "Enhanced fluorescence transduction properties of metallic nanocavity arrays," IEEE J. Sel. Top. Quantum Electron. 11, 778-784 (2005).
[CrossRef]

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003).
[CrossRef] [PubMed]

Love, J.

A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Mahdavi, F.

Y. Liu, F. Mahdavi, and S. Blair, "Enhanced fluorescence transduction properties of metallic nanocavity arrays," IEEE J. Sel. Top. Quantum Electron. 11, 778-784 (2005).
[CrossRef]

Mansuripur, M.

Marguet, D.

J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. F. Lenne, "Single-fiuorophore diffusion in a lipid membrane over a subwavelength aperture," J. Biol. Phys. 32, SN1-SN4 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901-1-103901-4 (2005).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Maystre, D.

D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A.D.Boardman, ed.(Wiley, 1982), Chap. 17.

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
[CrossRef]

Mets, U.

R. Rigler, U. Mets, J. Windengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low-background--analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Moffitt, M. G.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005).
[CrossRef] [PubMed]

Moloney, J. V.

Moreno, E.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901-1-103901-4 (2005).
[CrossRef]

Nevière, M.

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Petit, R.

R. Petit, ed., Electromagnetic Theory of Gratings (Springer, 1980), Chap. 5.
[CrossRef]

Popov, E.

E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, "Optimization of plasmon excitation at structured apertures," Appl. Opt. 44, 6141-6154 (2005).
[CrossRef] [PubMed]

N. Bonod, E. Popov, and M. Nevière, "Differential theory of diffraction by finite cylindrical objects," J. Opt. Soc. Am. A 22, 481-490 (2005).
[CrossRef]

J. Wenger, P. F. Lenne, E. Popov, and H. Rigneault, "Single molecule fluorescence in rectangular nano-apertures," Opt. Express 13, 7035-7044 (2005).
[CrossRef] [PubMed]

E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Transmission through single apertures," Opt. Commun. 255, 338-348 (2005).
[CrossRef]

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P. F. Lenne, and P. Chaumet, "Surface plasmon excitation on a single subwavelength hole in a metallic sheet," Appl. Opt. 44, 2332-2337 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

E. Popov, "Light diffraction by relief gratings: macro and microscopic point of view," in Progress in Optics, Vol. XXXIIP.Wolf, ed. (Elsevier, 1993), Chap. 2.
[CrossRef]

E. Popov and L. Tsonev, "Total absorption of light by metallic gratings and energy flow distribution," Surf. Sci. 230, 290-294 (1990).
[CrossRef]

Porto, J. A.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901-1-103901-4 (2005).
[CrossRef]

Rigler, R.

R. Rigler, U. Mets, J. Windengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low-background--analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Rigneault, H.

J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. F. Lenne, "Single-fiuorophore diffusion in a lipid membrane over a subwavelength aperture," J. Biol. Phys. 32, SN1-SN4 (2006).
[CrossRef] [PubMed]

J. Wenger, P. F. Lenne, E. Popov, and H. Rigneault, "Single molecule fluorescence in rectangular nano-apertures," Opt. Express 13, 7035-7044 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P. F. Lenne, and P. Chaumet, "Surface plasmon excitation on a single subwavelength hole in a metallic sheet," Appl. Opt. 44, 2332-2337 (2005).
[CrossRef] [PubMed]

Riordon, J.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005).
[CrossRef] [PubMed]

Salomon, L.

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Samiee, K. T.

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

Snyder, A.

A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Tayeb, G.

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588-1590 (2002).
[CrossRef]

Thio, T.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through sub-wavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Tsonev, L.

E. Popov and L. Tsonev, "Total absorption of light by metallic gratings and energy flow distribution," Surf. Sci. 230, 290-294 (1990).
[CrossRef]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Wenger, J.

J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. F. Lenne, "Single-fiuorophore diffusion in a lipid membrane over a subwavelength aperture," J. Biol. Phys. 32, SN1-SN4 (2006).
[CrossRef] [PubMed]

J. Wenger, P. F. Lenne, E. Popov, and H. Rigneault, "Single molecule fluorescence in rectangular nano-apertures," Opt. Express 13, 7035-7044 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Williams, L.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Windengren, J.

R. Rigler, U. Mets, J. Windengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low-background--analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

Wolf, P. A.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-402 (1902).

Wu, M.

J. B. Edel, M. Wu, B. Baird, and H. G. Craighead, "High spatial resolution observation of single molecule dynamics in living cell membranes," Biophys. J. 88, L43-L45 (2005).
[CrossRef] [PubMed]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

Zakharian, R.

Zayats, A.

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588-1590 (2002).
[CrossRef]

Biophys. J. (2)

K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005).
[CrossRef]

J. B. Edel, M. Wu, B. Baird, and H. G. Craighead, "High spatial resolution observation of single molecule dynamics in living cell membranes," Biophys. J. 88, L43-L45 (2005).
[CrossRef] [PubMed]

Eur. Biophys. J. (1)

R. Rigler, U. Mets, J. Windengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low-background--analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Liu, F. Mahdavi, and S. Blair, "Enhanced fluorescence transduction properties of metallic nanocavity arrays," IEEE J. Sel. Top. Quantum Electron. 11, 778-784 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005).
[CrossRef] [PubMed]

J. Biol. Phys. (1)

J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. F. Lenne, "Single-fiuorophore diffusion in a lipid membrane over a subwavelength aperture," J. Biol. Phys. 32, SN1-SN4 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nanotechnology (1)

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun. (4)

E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Transmission through single apertures," Opt. Commun. 255, 338-348 (2005).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004).
[CrossRef]

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Philos. Mag. (1)

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-402 (1902).

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through sub-wavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Phys. Rev. Lett. (4)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901-1-103901-4 (2005).
[CrossRef]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Surf. Sci. (1)

E. Popov and L. Tsonev, "Total absorption of light by metallic gratings and energy flow distribution," Surf. Sci. 230, 290-294 (1990).
[CrossRef]

Other (5)

R. Petit, ed., Electromagnetic Theory of Gratings (Springer, 1980), Chap. 5.
[CrossRef]

D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A.D.Boardman, ed.(Wiley, 1982), Chap. 17.

E. Popov, "Light diffraction by relief gratings: macro and microscopic point of view," in Progress in Optics, Vol. XXXIIP.Wolf, ed. (Elsevier, 1993), Chap. 2.
[CrossRef]

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998), p. 366.

A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of a circular aperture in a metallic film and notations.

Fig. 2
Fig. 2

Mean excitation density η of the electric field as a function of the radius of a circular aperture in an aluminum film with thickness of 220 nm ; the cladding is glass, and the substrate and aperture material are water. Open circles, excitation density taken inside the aperture; solid circles, the integration volume consisting of the region inside the aperture plus a cylinder with 10 μ m diameter and 3 μ m height after the aperture. Squares, experimental enhancement of the fluorescence rate per molecule. (a) Wavelength equal to 488 nm , with Rhodamine 6G as the fluorescent reporter. (b) Wavelength of 633 nm with Cyanine 5 as a fluorescent dye.

Fig. 3
Fig. 3

(a) Mean field intensity I S inside the aperture as a function of the depth for four different radii and fixed layer thickness ( t = 220 nm ) . Parameters are as in Fig. 2a. (b) Transmission defined as the ratio between the transmitted and the incident energy flux as a function of the radius. Parameters are as in Fig. 2a. The flux is measured through a circle of radius equal to the wavelength and positioned after the aperture for the transmission and before the aperture for the incident wave.

Fig. 4
Fig. 4

(a) Mean electric field intensity I S at a depth of z = 5 nm inside the aperture as a function of aperture radius. Wavelength is equal to 488 nm , aluminum layer thickness is 220 nm , the cladding is glass, and the solvent refractive index is 1.4. (b) Real and imaginary parts of the mode normalized propagation constant inside the hollow metallic waveguide inside the aperture.

Fig. 5
Fig. 5

As in Figs. 4a, 4b but for a wavelength equal to 633 nm .

Fig. 6
Fig. 6

As in Fig. 4 but for a different refractive index of the material inside the aperture equal to 2.8.

Fig. 7
Fig. 7

Total energy reflected in all propagating diffraction orders as a function of the groove width for an aluminum lamellar grating with period equal to 3 μ m . Wavelength is equal to 488 nm in TE polarization, cladding is glass, and filling material has a refractive index equal to 1.4. Two different groove depths, 0.25 μ m and infinitely deep grooves.

Fig. 8
Fig. 8

(a) Closeup of Fig. 7, together with the groove width dependence of the normalized propagation constant of the fundamental mode, evanescent or propagating inside the plane hollow metallic waveguide formed by the groove walls. (b) Mean electric field intensity at the groove opening as a function of the groove width.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η = I V V eff ,
I V = V E 2 d V .
V eff ( V E 2 d V ) 2 V E 4 d V .
I S = 1 π R 2 S E d S .
γ = k z k 0 .

Metrics