Abstract

In the study of light transmission through corrugated metallic film, it has been shown that along with the enhancement of light transmission, suppression may take place at specific values of the period and magnitude of corrugation for normal light incidence. Suppression was found to be due to the interplay between symmetric and assymetric surface plasmon polariton modes at their simultaneous excitation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  3. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Nevière, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003).
    [CrossRef] [PubMed]
  4. S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103-1-075103-9 (2004).
    [CrossRef]
  5. I. Avrutsky, Y. Zhao, and V. Kochergin, "Surface plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595-597 (2000).
    [CrossRef]
  6. T.-R. Yang and M. M. Dvoynenko, "Influence of small losses on light transmission through corrugated metal film," Opt. Commun. 227, 25-35 (2003).
    [CrossRef]
  7. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403-1-057403-4 (2002).
    [CrossRef]
  8. D. Gérard, L. Salomon, F. de Fornel, and A. Zayats, "Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses," Opt. Express 12, 3652-3663 (2004).
    [CrossRef] [PubMed]
  9. D. Gérard, L. Salomon, F. de Fornel, and A. Zayats, "Suppression of radiative losses of surface polaritons on nanostructured thin metal films," Opt. Lett. 30, 780-782 (2005).
    [CrossRef] [PubMed]
  10. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  11. W. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  13. B. Bai, L. Li, and L. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30, 2360-2362 (2005).
    [CrossRef] [PubMed]
  14. D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, "Ridge-enhanced optical transmission through a continuous metal film," Phys. Rev. B 69, 113405-1-113405-4 (2004).
    [CrossRef]
  15. I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-1-045421-14 (2004).
    [CrossRef]

2005 (2)

2004 (4)

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, "Ridge-enhanced optical transmission through a continuous metal film," Phys. Rev. B 69, 113405-1-113405-4 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-1-045421-14 (2004).
[CrossRef]

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103-1-075103-9 (2004).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. Zayats, "Analysis of the Bloch mode spectra of surface polaritonic crystals in the weak and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses," Opt. Express 12, 3652-3663 (2004).
[CrossRef] [PubMed]

2003 (3)

N. Bonod, S. Enoch, L. Li, E. Popov, and M. Nevière, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003).
[CrossRef] [PubMed]

T.-R. Yang and M. M. Dvoynenko, "Influence of small losses on light transmission through corrugated metal film," Opt. Commun. 227, 25-35 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (1)

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403-1-057403-4 (2002).
[CrossRef]

2000 (1)

1999 (1)

W. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1988 (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Avrutsky, I.

Bai, B.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Bonod, N.

Cao, Q.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403-1-057403-4 (2002).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Darmanyan, S. A.

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103-1-075103-9 (2004).
[CrossRef]

de Fornel, F.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Dvoynenko, M. M.

T.-R. Yang and M. M. Dvoynenko, "Influence of small losses on light transmission through corrugated metal film," Opt. Commun. 227, 25-35 (2003).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Enoch, S.

Gérard, D.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-1-045421-14 (2004).
[CrossRef]

Jackson, W. D.

W. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kochergin, V.

Lalanne, P.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403-1-057403-4 (2002).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, L.

Nevière, M.

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103-1-075103-9 (2004).
[CrossRef]

N. Bonod, S. Enoch, L. Li, E. Popov, and M. Nevière, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003).
[CrossRef] [PubMed]

Popov, E.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Salomon, L.

Sambles, J. R.

I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-1-045421-14 (2004).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Yang, T.-R.

T.-R. Yang and M. M. Dvoynenko, "Influence of small losses on light transmission through corrugated metal film," Opt. Commun. 227, 25-35 (2003).
[CrossRef]

Zayats, A.

Zayats, A. V.

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103-1-075103-9 (2004).
[CrossRef]

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, "Ridge-enhanced optical transmission through a continuous metal film," Phys. Rev. B 69, 113405-1-113405-4 (2004).
[CrossRef]

Zeng, L.

Zhao, Y.

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun. (1)

T.-R. Yang and M. M. Dvoynenko, "Influence of small losses on light transmission through corrugated metal film," Opt. Commun. 227, 25-35 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (4)

D. Gérard, L. Salomon, F. de Fornel, and A. V. Zayats, "Ridge-enhanced optical transmission through a continuous metal film," Phys. Rev. B 69, 113405-1-113405-4 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces," Phys. Rev. B 70, 045421-1-045421-14 (2004).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103-1-075103-9 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403-1-057403-4 (2002).
[CrossRef]

Other (2)

W. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission coefficient of a symmetrically corrugated film of h = 0.1 μ m at different values of Δ. The solid horizontal line in (a) shows the transmission value of the corresponding flat film. The result of Δ = 2 nm multiplied by 100 in (b).

Fig. 2
Fig. 2

Dependence of the minimal transmission coefficient on the modulation magnitude.

Fig. 3
Fig. 3

Dependence of (a) the reflection coefficient R and (b) the absorptance A on the modulation period for a symmetrically corrugated film ( h = 0.1 μ m ) at Δ = 2 nm . The dotted horizontal line in (a) shows the reflection coefficient (97.2%) of the corresponding flat film, and the one in (b) shows the corresponding absorptance (2.80%).

Fig. 4
Fig. 4

Intensity (a) and phase (b) distribution of the x component of the field inside the corrugated film at Δ = 2 nm and Δ = 0.4239 μ m for λ = 0.46 μ m .

Fig. 5
Fig. 5

Transmission coefficient of the bending-like ( φ = π ) corrugated film ( h = 0.1 μ m ) at different values of Δ.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( x , z ) = E 0 ( x , z ) + ( ϵ 1 ) k 0 2 d x Δ cos ( 2 π x Λ ) h + Δ cos ( 2 π x Λ ) d z G ( x , x , z , z ) E ( x , z ) ,
E ( x , z ) = n = exp [ i ( k 0 sin θ + 2 π n Λ ) x ] [ A n exp ( i η 2 , n z ) + B n exp ( i η 2 , n z ) ] ,
A = P abs P inc = 2 π ϵ 0 Λ d x Δ cos ( 2 π x Λ ) h + Δ cos ( 2 π x Λ + φ ) d z E ( x , z ) 2 λ Λ cos θ E 0 2 .
exp [ i η 2 , n Δ cos ( 2 π x Λ ) ] m = N N i m J m ( η 2 , n Δ ) exp ( i 2 π n x Λ ) ,

Metrics