Abstract

Numerical simulations are used to study the near-field properties of nanocylinders. Specific attention is given to surface-plasmon-polariton resonances and field localization in dielectric cylinders with partial metal coating. Conditions for observing local-field enhancement are investigated as well as the degrees of freedom that are available to customize the wavelength response of the nanosystem.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
    [CrossRef]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chaps. 4 and 12.4, pp. 82-129, 369.
  3. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
    [CrossRef] [PubMed]
  4. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
    [CrossRef] [PubMed]
  5. J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linear dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
    [CrossRef]
  6. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method in Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE, 1998).
  7. E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J. 186, 705-714 (1973).
    [CrossRef]
  8. B. T. Drain, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
    [CrossRef]
  9. M. Inoue and K. Ohtaka, "Surface enhanced Raman scattering by metal spheres. I. Cluster effects," J. Phys. Soc. Jpn. 52, 3853-3864 (1983).
    [CrossRef]
  10. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, "Single molecule Raman spectroscopy at the junction of large Ag nanocrystals," J. Phys. Chem. B 107, 9964-9972 (2003).
    [CrossRef]
  11. J. Renger, S. Grafström, and L. M. Eng, "Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface," J. Opt. Soc. Am. A 21, 1362-1367 (2004).
    [CrossRef]
  12. A.-S. Grimault, A. Vial, and M. L. de la Chapelle, "Influence of the shape of a gold nanoparticle on the localized-surface plasmon resonance and the surface-enhanced Raman scattering intensity," in Proc. SPIE 5927, 94-103 (2005).
  13. J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Fabrication and wetting properties of metallic half-shells with submicron diameter," Nano Lett. 2, 891-894 (2002).
    [CrossRef]
  14. C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
    [CrossRef]
  15. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
    [CrossRef] [PubMed]
  16. J. L. West and N. J. Halas, "Engineered nanomaterials for biophotonics applications: improving sensing, imaging and therapeutics," Annu. Rev. Biomed. Eng. 5, 285-292 (2003).
    [CrossRef] [PubMed]
  17. A. J. Haes, D. A. Stuart, S. Nie, and R. P. van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles, as biological sensing platform," J. Fluoresc. 14, 355-366 (2004).
    [CrossRef] [PubMed]
  18. COMSOL Multiphysics 3.2, Electromagnetics Module, User's Guide (Comsol AB, 2005), pp. 72-80.
  19. A. Taflove and S. C. Hagness, Computational Electromagnetics, 2nd ed. (Artech House, 2000), Chaps. 4 and 5, pp. 109-232.
  20. A. Sarychev, V. A. Shubin, and V. M. Shalaev, "Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites," Phys. Rev. B 60, 16389-16408 (1999).
    [CrossRef]
  21. Y.-J. Hsu, Y.-C. Huang, J.-S. Lih, and J.-L. Chern, "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials," J. Appl. Phys. 96, 1979-1982 (2004).
    [CrossRef]
  22. J. van Bladel, Singular Electromagnetic Fields and Sources (Clarendon, 1991).
  23. J. Meixner, "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propag. AP-20, 442-446 (1972).
    [CrossRef]
  24. J. Geisel, K.-H. Muth, and W. Heinrich, "The behavior of the electromagnetic field at edges of media with finite conductivity," IEEE Trans. Microwave Theory Tech. 40, 158-161 (1992).
    [CrossRef]
  25. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (1992).
    [CrossRef]
  26. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
    [CrossRef]
  27. E. Prodan, P. Nordlander, and N. J. Halas, "Electronic structure and optical properties of gold nanoshells," Nano Lett. 3, 1411-1415 (2003).
    [CrossRef]
  28. M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle resonances to the dielectric environment: boiling down the many controlling factors to plasmon band location and material properties," in Proc. SPIE 5927, 71-83 (2005).

2005 (4)

A.-S. Grimault, A. Vial, and M. L. de la Chapelle, "Influence of the shape of a gold nanoparticle on the localized-surface plasmon resonance and the surface-enhanced Raman scattering intensity," in Proc. SPIE 5927, 94-103 (2005).

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
[CrossRef] [PubMed]

COMSOL Multiphysics 3.2, Electromagnetics Module, User's Guide (Comsol AB, 2005), pp. 72-80.

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle resonances to the dielectric environment: boiling down the many controlling factors to plasmon band location and material properties," in Proc. SPIE 5927, 71-83 (2005).

2004 (3)

J. Renger, S. Grafström, and L. M. Eng, "Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface," J. Opt. Soc. Am. A 21, 1362-1367 (2004).
[CrossRef]

A. J. Haes, D. A. Stuart, S. Nie, and R. P. van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles, as biological sensing platform," J. Fluoresc. 14, 355-366 (2004).
[CrossRef] [PubMed]

Y.-J. Hsu, Y.-C. Huang, J.-S. Lih, and J.-L. Chern, "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials," J. Appl. Phys. 96, 1979-1982 (2004).
[CrossRef]

2003 (6)

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
[CrossRef]

J. L. West and N. J. Halas, "Engineered nanomaterials for biophotonics applications: improving sensing, imaging and therapeutics," Annu. Rev. Biomed. Eng. 5, 285-292 (2003).
[CrossRef] [PubMed]

E. Prodan, P. Nordlander, and N. J. Halas, "Electronic structure and optical properties of gold nanoshells," Nano Lett. 3, 1411-1415 (2003).
[CrossRef]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, "Single molecule Raman spectroscopy at the junction of large Ag nanocrystals," J. Phys. Chem. B 107, 9964-9972 (2003).
[CrossRef]

2002 (2)

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Fabrication and wetting properties of metallic half-shells with submicron diameter," Nano Lett. 2, 891-894 (2002).
[CrossRef]

2001 (1)

J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linear dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
[CrossRef]

2000 (1)

A. Taflove and S. C. Hagness, Computational Electromagnetics, 2nd ed. (Artech House, 2000), Chaps. 4 and 5, pp. 109-232.

1999 (1)

A. Sarychev, V. A. Shubin, and V. M. Shalaev, "Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites," Phys. Rev. B 60, 16389-16408 (1999).
[CrossRef]

1998 (1)

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method in Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE, 1998).

1992 (2)

J. Geisel, K.-H. Muth, and W. Heinrich, "The behavior of the electromagnetic field at edges of media with finite conductivity," IEEE Trans. Microwave Theory Tech. 40, 158-161 (1992).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (1992).
[CrossRef]

1991 (1)

J. van Bladel, Singular Electromagnetic Fields and Sources (Clarendon, 1991).

1988 (1)

B. T. Drain, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
[CrossRef]

1985 (1)

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

1983 (2)

M. Inoue and K. Ohtaka, "Surface enhanced Raman scattering by metal spheres. I. Cluster effects," J. Phys. Soc. Jpn. 52, 3853-3864 (1983).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chaps. 4 and 12.4, pp. 82-129, 369.

1973 (1)

E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J. 186, 705-714 (1973).
[CrossRef]

1972 (1)

J. Meixner, "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propag. AP-20, 442-446 (1972).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chaps. 4 and 12.4, pp. 82-129, 369.

Borgia, I.

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Bosnick, K.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, "Single molecule Raman spectroscopy at the junction of large Ag nanocrystals," J. Phys. Chem. B 107, 9964-9972 (2003).
[CrossRef]

Bradley, R. K.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
[CrossRef]

Brunetti, B.

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Brus, L.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, "Single molecule Raman spectroscopy at the junction of large Ag nanocrystals," J. Phys. Chem. B 107, 9964-9972 (2003).
[CrossRef]

Cariati, F.

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Charnay, C.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
[CrossRef]

Chatterjee, A.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method in Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE, 1998).

Chern, J.-L.

Y.-J. Hsu, Y.-C. Huang, J.-S. Lih, and J.-L. Chern, "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials," J. Appl. Phys. 96, 1979-1982 (2004).
[CrossRef]

de la Chapelle, M. L.

A.-S. Grimault, A. Vial, and M. L. de la Chapelle, "Influence of the shape of a gold nanoparticle on the localized-surface plasmon resonance and the surface-enhanced Raman scattering intensity," in Proc. SPIE 5927, 94-103 (2005).

Drain, B. T.

B. T. Drain, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Eng, L. M.

Fermo, P.

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Gates, B. D.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Fabrication and wetting properties of metallic half-shells with submicron diameter," Nano Lett. 2, 891-894 (2002).
[CrossRef]

Geisel, J.

J. Geisel, K.-H. Muth, and W. Heinrich, "The behavior of the electromagnetic field at edges of media with finite conductivity," IEEE Trans. Microwave Theory Tech. 40, 158-161 (1992).
[CrossRef]

Grafström, S.

Grimault, A.-S.

A.-S. Grimault, A. Vial, and M. L. de la Chapelle, "Influence of the shape of a gold nanoparticle on the localized-surface plasmon resonance and the surface-enhanced Raman scattering intensity," in Proc. SPIE 5927, 94-103 (2005).

Haes, A. J.

A. J. Haes, D. A. Stuart, S. Nie, and R. P. van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles, as biological sensing platform," J. Fluoresc. 14, 355-366 (2004).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electromagnetics, 2nd ed. (Artech House, 2000), Chaps. 4 and 5, pp. 109-232.

Halas, N. J.

J. L. West and N. J. Halas, "Engineered nanomaterials for biophotonics applications: improving sensing, imaging and therapeutics," Annu. Rev. Biomed. Eng. 5, 285-292 (2003).
[CrossRef] [PubMed]

E. Prodan, P. Nordlander, and N. J. Halas, "Electronic structure and optical properties of gold nanoshells," Nano Lett. 3, 1411-1415 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
[CrossRef]

Heinrich, W.

J. Geisel, K.-H. Muth, and W. Heinrich, "The behavior of the electromagnetic field at edges of media with finite conductivity," IEEE Trans. Microwave Theory Tech. 40, 158-161 (1992).
[CrossRef]

Hirsch, L. R.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Hsu, Y.-J.

Y.-J. Hsu, Y.-C. Huang, J.-S. Lih, and J.-L. Chern, "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials," J. Appl. Phys. 96, 1979-1982 (2004).
[CrossRef]

Huang, Y.-C.

Y.-J. Hsu, Y.-C. Huang, J.-S. Lih, and J.-L. Chern, "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials," J. Appl. Phys. 96, 1979-1982 (2004).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chaps. 4 and 12.4, pp. 82-129, 369.

Inoue, M.

M. Inoue and K. Ohtaka, "Surface enhanced Raman scattering by metal spheres. I. Cluster effects," J. Phys. Soc. Jpn. 52, 3853-3864 (1983).
[CrossRef]

Jackson, J. B.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Jiang, J.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, "Single molecule Raman spectroscopy at the junction of large Ag nanocrystals," J. Phys. Chem. B 107, 9964-9972 (2003).
[CrossRef]

Kempel, L. C.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method in Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE, 1998).

Kim, J.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
[CrossRef] [PubMed]

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (1992).
[CrossRef]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle resonances to the dielectric environment: boiling down the many controlling factors to plasmon band location and material properties," in Proc. SPIE 5927, 71-83 (2005).

Lee, A.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
[CrossRef]

Lee, L. P.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
[CrossRef] [PubMed]

Lih, J.-S.

Y.-J. Hsu, Y.-C. Huang, J.-S. Lih, and J.-L. Chern, "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials," J. Appl. Phys. 96, 1979-1982 (2004).
[CrossRef]

Liu, G. L.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
[CrossRef] [PubMed]

Love, J. C.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Fabrication and wetting properties of metallic half-shells with submicron diameter," Nano Lett. 2, 891-894 (2002).
[CrossRef]

Lu, Y.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
[CrossRef] [PubMed]

Maillard, M.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, "Single molecule Raman spectroscopy at the junction of large Ag nanocrystals," J. Phys. Chem. B 107, 9964-9972 (2003).
[CrossRef]

Man, S.-Q.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
[CrossRef]

Mariani, I.

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Martin, O. J. F.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (1992).
[CrossRef]

Meixner, J.

J. Meixner, "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propag. AP-20, 442-446 (1972).
[CrossRef]

Mejia, Y. X.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
[CrossRef] [PubMed]

Mellini, M.

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Miller, M. M.

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle resonances to the dielectric environment: boiling down the many controlling factors to plasmon band location and material properties," in Proc. SPIE 5927, 71-83 (2005).

Moran, C. E.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
[CrossRef]

Moskovits, M.

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Muth, K.-H.

J. Geisel, K.-H. Muth, and W. Heinrich, "The behavior of the electromagnetic field at edges of media with finite conductivity," IEEE Trans. Microwave Theory Tech. 40, 158-161 (1992).
[CrossRef]

Nelson, R. O.

J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linear dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
[CrossRef]

Nie, S.

A. J. Haes, D. A. Stuart, S. Nie, and R. P. van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles, as biological sensing platform," J. Fluoresc. 14, 355-366 (2004).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, P. Nordlander, and N. J. Halas, "Electronic structure and optical properties of gold nanoshells," Nano Lett. 3, 1411-1415 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Ohtaka, K.

M. Inoue and K. Ohtaka, "Surface enhanced Raman scattering by metal spheres. I. Cluster effects," J. Phys. Soc. Jpn. 52, 3853-3864 (1983).
[CrossRef]

Padeletti, G.

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Paul, K. E.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Fabrication and wetting properties of metallic half-shells with submicron diameter," Nano Lett. 2, 891-894 (2002).
[CrossRef]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J. 186, 705-714 (1973).
[CrossRef]

Prodan, E.

E. Prodan, P. Nordlander, and N. J. Halas, "Electronic structure and optical properties of gold nanoshells," Nano Lett. 3, 1411-1415 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J. 186, 705-714 (1973).
[CrossRef]

Radloff, C.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Renger, J.

Sarychev, A.

A. Sarychev, V. A. Shubin, and V. M. Shalaev, "Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites," Phys. Rev. B 60, 16389-16408 (1999).
[CrossRef]

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (1992).
[CrossRef]

Sgamellotti, A.

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Shalaev, V. M.

A. Sarychev, V. A. Shubin, and V. M. Shalaev, "Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites," Phys. Rev. B 60, 16389-16408 (1999).
[CrossRef]

Shubin, V. A.

A. Sarychev, V. A. Shubin, and V. M. Shalaev, "Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites," Phys. Rev. B 60, 16389-16408 (1999).
[CrossRef]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (1992).
[CrossRef]

Stuart, D. A.

A. J. Haes, D. A. Stuart, S. Nie, and R. P. van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles, as biological sensing platform," J. Fluoresc. 14, 355-366 (2004).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electromagnetics, 2nd ed. (Artech House, 2000), Chaps. 4 and 5, pp. 109-232.

van Bladel, J.

J. van Bladel, Singular Electromagnetic Fields and Sources (Clarendon, 1991).

van Duyne, R. P.

A. J. Haes, D. A. Stuart, S. Nie, and R. P. van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles, as biological sensing platform," J. Fluoresc. 14, 355-366 (2004).
[CrossRef] [PubMed]

Vial, A.

A.-S. Grimault, A. Vial, and M. L. de la Chapelle, "Influence of the shape of a gold nanoparticle on the localized-surface plasmon resonance and the surface-enhanced Raman scattering intensity," in Proc. SPIE 5927, 94-103 (2005).

Viti, C.

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Volakis, J. L.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method in Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE, 1998).

West, J. L.

J. L. West and N. J. Halas, "Engineered nanomaterials for biophotonics applications: improving sensing, imaging and therapeutics," Annu. Rev. Biomed. Eng. 5, 285-292 (2003).
[CrossRef] [PubMed]

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Whitesides, G. M.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Fabrication and wetting properties of metallic half-shells with submicron diameter," Nano Lett. 2, 891-894 (2002).
[CrossRef]

Wolfe, D. B.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Fabrication and wetting properties of metallic half-shells with submicron diameter," Nano Lett. 2, 891-894 (2002).
[CrossRef]

Young, J. L.

J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linear dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
[CrossRef]

Anal. Chem. (1)

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. L. West and N. J. Halas, "Engineered nanomaterials for biophotonics applications: improving sensing, imaging and therapeutics," Annu. Rev. Biomed. Eng. 5, 285-292 (2003).
[CrossRef] [PubMed]

Appl. Surf. Sci. (1)

I. Borgia, B. Brunetti, I. Mariani, A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, and G. Padeletti, "Heterogeneous distribution of metal nanocrystals in glazes of historic pottery," Appl. Surf. Sci. 185, 206-216 (2002).
[CrossRef]

Astrophys. J. (2)

E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J. 186, 705-714 (1973).
[CrossRef]

B. T. Drain, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linear dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J. Meixner, "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propag. AP-20, 442-446 (1972).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. Geisel, K.-H. Muth, and W. Heinrich, "The behavior of the electromagnetic field at edges of media with finite conductivity," IEEE Trans. Microwave Theory Tech. 40, 158-161 (1992).
[CrossRef]

J. Appl. Phys. (1)

Y.-J. Hsu, Y.-C. Huang, J.-S. Lih, and J.-L. Chern, "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials," J. Appl. Phys. 96, 1979-1982 (2004).
[CrossRef]

J. Fluoresc. (1)

A. J. Haes, D. A. Stuart, S. Nie, and R. P. van Duyne, "Using solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles, as biological sensing platform," J. Fluoresc. 14, 355-366 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (2)

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, "Single molecule Raman spectroscopy at the junction of large Ag nanocrystals," J. Phys. Chem. B 107, 9964-9972 (2003).
[CrossRef]

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, "Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties," J. Phys. Chem. B 107, 7327-7333 (2003).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Inoue and K. Ohtaka, "Surface enhanced Raman scattering by metal spheres. I. Cluster effects," J. Phys. Soc. Jpn. 52, 3853-3864 (1983).
[CrossRef]

Nano Lett. (3)

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119-124 (2005).
[CrossRef] [PubMed]

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Fabrication and wetting properties of metallic half-shells with submicron diameter," Nano Lett. 2, 891-894 (2002).
[CrossRef]

E. Prodan, P. Nordlander, and N. J. Halas, "Electronic structure and optical properties of gold nanoshells," Nano Lett. 3, 1411-1415 (2003).
[CrossRef]

Phys. Rev. B (2)

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (1992).
[CrossRef]

A. Sarychev, V. A. Shubin, and V. M. Shalaev, "Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites," Phys. Rev. B 60, 16389-16408 (1999).
[CrossRef]

Proc. SPIE (2)

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle resonances to the dielectric environment: boiling down the many controlling factors to plasmon band location and material properties," in Proc. SPIE 5927, 71-83 (2005).

A.-S. Grimault, A. Vial, and M. L. de la Chapelle, "Influence of the shape of a gold nanoparticle on the localized-surface plasmon resonance and the surface-enhanced Raman scattering intensity," in Proc. SPIE 5927, 94-103 (2005).

Rev. Mod. Phys. (1)

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Other (5)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chaps. 4 and 12.4, pp. 82-129, 369.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method in Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE, 1998).

J. van Bladel, Singular Electromagnetic Fields and Sources (Clarendon, 1991).

COMSOL Multiphysics 3.2, Electromagnetics Module, User's Guide (Comsol AB, 2005), pp. 72-80.

A. Taflove and S. C. Hagness, Computational Electromagnetics, 2nd ed. (Artech House, 2000), Chaps. 4 and 5, pp. 109-232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometry for simulating near-field scattering. PML, perfectly matched layer.

Fig. 2
Fig. 2

Cross section of two-dimensional nanostructures.

Fig. 3
Fig. 3

Simulation of the near-field response of two-dimensional nanocylinders (TM polarization; r 1 = r 2 = 0.25 μ m , r 3 = 0.05 μ m , Δ = 0.05 μ m ; ϵ 2 = ϵ 3 = 2.25 ; θ = 0 ): (a) electric and (b) magnetic field magnitudes for λ = 312 nm (c) Electric field magnitude along line L in (a), (d) Maxima electric near-field field magnitude along the surface of the nanostructure versus the illuminating wavelength.

Fig. 4
Fig. 4

Spectra of the maximum electric field magnitudes for different size parameters s.

Fig. 5
Fig. 5

Spectra of the maximum electric field magnitudes for different refractive indices n 2 of the dielectric core.

Fig. 6
Fig. 6

Spectra of maximum electric field magnitudes for different metal caps C in Fig. 2.

Fig. 7
Fig. 7

Spectra of maximum electric field magnitudes for different mutual orientation θ of the nanocylinder and incident field.

Fig. 8
Fig. 8

Spectra of maximum electric field magnitudes; influence of an additional metal core ( r = 0.1 μ m ) ; Δ x and Δ y refer to the off-center location of the metal core.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϵ m ( f ) = ϵ b ( f p f ) 2 1 + i f τ f ,

Metrics