Abstract

Starting from some general and plausible assumptions based on geometrical optics and on a common feature of the truncated Bessel beams, a heuristic derivation is presented of very simple analytical expressions capable of describing the longitudinal (on-axis) evolution of axially symmetric nondiffracting pulses truncated by finite apertures. The analytical formulation is applied to several situations involving subluminal, luminal, or superluminal localized pulses, and the results are compared with those obtained by numerical simulations of the Rayleigh–Sommerfeld diffraction integrals. The results are in excellent agreement. The present approach can be rather useful, because it yields, in general, closed-form expressions, avoiding the need for time-consuming numerical simulations, and also because such expressions provide a powerful tool for exploring several important properties of the truncated localized pulses, such as their depth of fields, the longitudinal pulse behavior, and the decaying rates.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription