Abstract

In forensic science the finger marks left unintentionally by people at a crime scene are referred to as latent fingerprints. Most existing techniques to detect and lift latent fingerprints require application of a certain material directly onto the exhibit. The chemical and physical processing applied to the fingerprint potentially degrades or prevents further forensic testing on the same evidence sample. Many existing methods also have deleterious side effects. We introduce a method to detect and extract latent fingerprint images without applying any powder or chemicals on the object. Our method is based on the optical phenomena of polarization and specular reflection together with the physiology of fingerprint formation. The recovered image quality is comparable to existing methods. In some cases, such as the sticky side of tape, our method shows unique advantages.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.C.Lee and R.E.Gaensslen, eds., Advances in Fingerprint Technology (CRC Press, 1994).
  2. H.C.Lee and R.E.Gaensslen, eds., Advances in Fingerprint Technology, 2nd ed. (CRC Press, 2001).
    [CrossRef]
  3. C. A. Coppock, Contrast: An Investigator's Basic Reference Guide to Fingerprint Identification Concepts (Thomas, 2001).
  4. Federal Bureau of Investigation, The Science of Fingerprints: Classification and Uses (U.S. Government Printing Office, 1984).
  5. S. G. Demos and R. R. Alfano, "Optical fingerprinting using polarisation contrast improvement," Electron. Lett. 33, 582-584 (1997).
    [CrossRef]
  6. K. H. Fielding, J. L. Horner, and C. K. Makekau, "Optical fingerprint identification by binary joint transform correlation," Opt. Eng. 30, 1958-1961 (1991).
    [CrossRef]
  7. W. R. Scott, Fingerprint Mechanics, A Handbook: Fingerprints from Crime Scene to Courtroom (Thomas, 1951).
  8. R. D. Olsen, Sr., Scott's Fingerprint Mechanics (Thomas, 1978).
  9. P. Margot and C. Lennard, Fingerprint Detection Techniques (Institut de police scientifique et de criminologie, Université de Lausanne, Lausanne, Switzerland, 1994).
  10. B. E. Dalrymple, J. M. Duff, and E. R. Menzel, "Inherent fingerprint luminescence--detection by laser," J. Forensic Sci. 22, 106-115 (1977).
  11. E. R. German, "Computer image enhancement of latent prints and hard copy output devices," in Proceedings of the International Forensic Symposium on Latent Prints (Laboratory and Identification Divisions, Federal Bureau of Investigation, 1987), pp. 151-152.
  12. M. C. Cubuk and S. Saygi, "A rising value in evidence detection: ultraviolet light," Forensic Sci. Int. 136, 128 (2003).
  13. E. R. Menzel and J. M. Duff, "Laser detection of latent fingerprints--treatment with fluorescers," J. Forensic Sci. 24, 96-100 (1979).
    [PubMed]
  14. E. R. Menzel, "Laser detection of latent fingerprints--treatment with phosphorescers," J. Forensic Sci. 24, 582-585 (1979).
  15. E. R. Menzel and K. E. Fox, "Laser detection of latent fingerprints: preparation of fluorescent dusting powders and the feasibility of a portable system," J. Forensic Sci. 25, 150-153 (1980).
    [PubMed]
  16. D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin," J. Forensic Sci. 27, 200-204 (1982).
    [PubMed]
  17. D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin followed by zinc chloride," J. Forensic Sci. 27, 513-518 (1982).
    [PubMed]
  18. K. E. Creer, "Operational experience in the detection and photography of latent fingerprints by argon-ion laser," Forensic Sci. Int. 23, 149-160 (1983).
    [CrossRef]
  19. E. R. Menzel, J. A. Burt, and T. W. Sinor, "Laser detection of latent fingerprints: treatment with glue containing cyanoacrylate ester," J. Forensic Sci. 28, 307-317 (1983).
  20. R. Pfister, "The optical revelation of latent fingerprints," Fingerprint World 10, 64-70 (1985).
  21. C. J. Lennard and P. A. Margot, "Sequencing of reagents for the improved visualisation of latent fingerprints," J. Forensic Ident. 38, 197-210 (1988).
  22. E. R. Menzel, Fingerprint Detection with Lasers (Marcel Dekker, 1999).
  23. D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2003).
  24. R. Schwind, "Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notenecta glauca," Cell Tissue Res. 232, 53-63 (1983).
    [CrossRef] [PubMed]
  25. G. Horváth, "Reflection polarization patterns at flat water surfaces and their relevance for insect polarization vision," J. Theor. Biol. 175, 27-37 (1995).
    [CrossRef] [PubMed]
  26. L. B. Wolff, "Relative brightness of specular and diffuse reflection," Opt. Eng. 33, 285-293 (1994).
    [CrossRef]
  27. B. E. Dalrymple and T. Menzies, "Computer enhancement of evidence through background noise suppression," J. Forensic Sci. 39, 537-546 (1994).
  28. T. Ko, "Fingerprint enhancement by spectral analysis techniques," in Proceedings of the 31st Applied Imagery Pattern Recognition Workshop (IEEE Press, 2002), pp. 133-139.
    [CrossRef]
  29. S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Polarization enhanced visual surveillance techniques," invited paper, in Proceedings of IEEE International Conference on Networking, Sensing and Control (IEEE Systems, Man and Cybernetics Society, 2004).
  30. K. M. Yemelyanov, S.-S. Lin, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, "Bio-inspired display of polarization information using selected visual cues," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 71-84 (2003), Vol. 1, pp. 216-221.
    [CrossRef]
  31. L. B. Wolff, "Polarization camera for computer vision with a beam splitter," J. Opt. Soc. Am. A 11, 2935-2945 (1994).
    [CrossRef]
  32. L. B. Wolff and A. G. Andreou, "Polarization camera sensors," Image Vis. Comput. 13, 497-510 (1995).
    [CrossRef]
  33. L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13, 195-203 (1997).
    [CrossRef]
  34. M. P. Rowe, E. N. Pugh Jr., and N. Engheta, "Polarization-difference imaging: a biologically inspired technique for observation through scattering media," Opt. Lett. 20, 608-610 (1995).
    [CrossRef] [PubMed]
  35. J. S. Tyo, M. P. Rowe, E. N. Pugh Jr., and N. Engheta, "Target detection in optically scattering media by polarization-difference imaging," Appl. Opt. 35, 1855-1870 (1996).
    [CrossRef] [PubMed]
  36. J. S. Tyo, E. N. Pugh Jr., and N. Engheta, "Colorimetric representation for use with polarization-difference imaging of objects in scattering media," J. Opt. Soc. Am. A 15, 367-374 (1998).
    [CrossRef]
  37. J. S. Tyo, "Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system," J. Opt. Soc. Am. A 15, 359-366 (1998).
    [CrossRef]
  38. K. M. Yemelyanov, M. A. Lo, E. N. Pugh Jr., and N. Engheta, "Display of polarization information by coherently moving dots," Opt. Express 11, 1577-1584 (2003).
    [CrossRef] [PubMed]
  39. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2001).
  40. J. H. Lambert, Photometria sive de mensura et gradibus luminus, colorum et umbrae (Eberhard Klett, 1760).
  41. K. E. Torrance and E. M. Sparrow, "Theory for off-specular reflection from roughened surfaces," J. Opt. Soc. Am. 57, 1105-1114 (1967).
    [CrossRef]
  42. R. L. Cook and K. E. Torrance, "A reflectance model for computer graphics," Comput. Graph. 15, 307-316 (1981).
    [CrossRef]
  43. B.-T. Phong, "Illumination for computer generated pictures," Commun. ACM 18, 311-317 (1975).
    [CrossRef]
  44. J. D. Foley, A. vanDam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice (Addison-Wesley, 1990).
  45. S. K. Nayar, K. Ikeuchi, and T. Kanade, "Surface reflection: physical and geometrical perspectives," IEEE Trans. Pattern Anal. Mach. Intell. 13, 611-634 (1991).
    [CrossRef]
  46. E. Hecht, Optics (Addison-Wesley Longman, 1998).
  47. S. K. Bramble, K. E. Creer, W. G. Qiang, and B. Sheard, "Ultraviolet luminescence from latent fingerprints," Forensic Sci. Int. 59, 3-14 (1993).
    [CrossRef] [PubMed]

2004 (1)

S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Polarization enhanced visual surveillance techniques," invited paper, in Proceedings of IEEE International Conference on Networking, Sensing and Control (IEEE Systems, Man and Cybernetics Society, 2004).

2003 (4)

K. M. Yemelyanov, S.-S. Lin, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, "Bio-inspired display of polarization information using selected visual cues," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 71-84 (2003), Vol. 1, pp. 216-221.
[CrossRef]

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2003).

M. C. Cubuk and S. Saygi, "A rising value in evidence detection: ultraviolet light," Forensic Sci. Int. 136, 128 (2003).

K. M. Yemelyanov, M. A. Lo, E. N. Pugh Jr., and N. Engheta, "Display of polarization information by coherently moving dots," Opt. Express 11, 1577-1584 (2003).
[CrossRef] [PubMed]

2002 (1)

T. Ko, "Fingerprint enhancement by spectral analysis techniques," in Proceedings of the 31st Applied Imagery Pattern Recognition Workshop (IEEE Press, 2002), pp. 133-139.
[CrossRef]

2001 (3)

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2001).

H.C.Lee and R.E.Gaensslen, eds., Advances in Fingerprint Technology, 2nd ed. (CRC Press, 2001).
[CrossRef]

C. A. Coppock, Contrast: An Investigator's Basic Reference Guide to Fingerprint Identification Concepts (Thomas, 2001).

1999 (1)

E. R. Menzel, Fingerprint Detection with Lasers (Marcel Dekker, 1999).

1998 (3)

1997 (2)

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13, 195-203 (1997).
[CrossRef]

S. G. Demos and R. R. Alfano, "Optical fingerprinting using polarisation contrast improvement," Electron. Lett. 33, 582-584 (1997).
[CrossRef]

1996 (1)

1995 (3)

M. P. Rowe, E. N. Pugh Jr., and N. Engheta, "Polarization-difference imaging: a biologically inspired technique for observation through scattering media," Opt. Lett. 20, 608-610 (1995).
[CrossRef] [PubMed]

L. B. Wolff and A. G. Andreou, "Polarization camera sensors," Image Vis. Comput. 13, 497-510 (1995).
[CrossRef]

G. Horváth, "Reflection polarization patterns at flat water surfaces and their relevance for insect polarization vision," J. Theor. Biol. 175, 27-37 (1995).
[CrossRef] [PubMed]

1994 (5)

L. B. Wolff, "Relative brightness of specular and diffuse reflection," Opt. Eng. 33, 285-293 (1994).
[CrossRef]

B. E. Dalrymple and T. Menzies, "Computer enhancement of evidence through background noise suppression," J. Forensic Sci. 39, 537-546 (1994).

H.C.Lee and R.E.Gaensslen, eds., Advances in Fingerprint Technology (CRC Press, 1994).

P. Margot and C. Lennard, Fingerprint Detection Techniques (Institut de police scientifique et de criminologie, Université de Lausanne, Lausanne, Switzerland, 1994).

L. B. Wolff, "Polarization camera for computer vision with a beam splitter," J. Opt. Soc. Am. A 11, 2935-2945 (1994).
[CrossRef]

1993 (1)

S. K. Bramble, K. E. Creer, W. G. Qiang, and B. Sheard, "Ultraviolet luminescence from latent fingerprints," Forensic Sci. Int. 59, 3-14 (1993).
[CrossRef] [PubMed]

1991 (2)

S. K. Nayar, K. Ikeuchi, and T. Kanade, "Surface reflection: physical and geometrical perspectives," IEEE Trans. Pattern Anal. Mach. Intell. 13, 611-634 (1991).
[CrossRef]

K. H. Fielding, J. L. Horner, and C. K. Makekau, "Optical fingerprint identification by binary joint transform correlation," Opt. Eng. 30, 1958-1961 (1991).
[CrossRef]

1990 (1)

J. D. Foley, A. vanDam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice (Addison-Wesley, 1990).

1988 (1)

C. J. Lennard and P. A. Margot, "Sequencing of reagents for the improved visualisation of latent fingerprints," J. Forensic Ident. 38, 197-210 (1988).

1987 (1)

E. R. German, "Computer image enhancement of latent prints and hard copy output devices," in Proceedings of the International Forensic Symposium on Latent Prints (Laboratory and Identification Divisions, Federal Bureau of Investigation, 1987), pp. 151-152.

1985 (1)

R. Pfister, "The optical revelation of latent fingerprints," Fingerprint World 10, 64-70 (1985).

1984 (1)

Federal Bureau of Investigation, The Science of Fingerprints: Classification and Uses (U.S. Government Printing Office, 1984).

1983 (3)

K. E. Creer, "Operational experience in the detection and photography of latent fingerprints by argon-ion laser," Forensic Sci. Int. 23, 149-160 (1983).
[CrossRef]

E. R. Menzel, J. A. Burt, and T. W. Sinor, "Laser detection of latent fingerprints: treatment with glue containing cyanoacrylate ester," J. Forensic Sci. 28, 307-317 (1983).

R. Schwind, "Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notenecta glauca," Cell Tissue Res. 232, 53-63 (1983).
[CrossRef] [PubMed]

1982 (2)

D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin," J. Forensic Sci. 27, 200-204 (1982).
[PubMed]

D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin followed by zinc chloride," J. Forensic Sci. 27, 513-518 (1982).
[PubMed]

1981 (1)

R. L. Cook and K. E. Torrance, "A reflectance model for computer graphics," Comput. Graph. 15, 307-316 (1981).
[CrossRef]

1980 (1)

E. R. Menzel and K. E. Fox, "Laser detection of latent fingerprints: preparation of fluorescent dusting powders and the feasibility of a portable system," J. Forensic Sci. 25, 150-153 (1980).
[PubMed]

1979 (2)

E. R. Menzel and J. M. Duff, "Laser detection of latent fingerprints--treatment with fluorescers," J. Forensic Sci. 24, 96-100 (1979).
[PubMed]

E. R. Menzel, "Laser detection of latent fingerprints--treatment with phosphorescers," J. Forensic Sci. 24, 582-585 (1979).

1978 (1)

R. D. Olsen, Sr., Scott's Fingerprint Mechanics (Thomas, 1978).

1977 (1)

B. E. Dalrymple, J. M. Duff, and E. R. Menzel, "Inherent fingerprint luminescence--detection by laser," J. Forensic Sci. 22, 106-115 (1977).

1975 (1)

B.-T. Phong, "Illumination for computer generated pictures," Commun. ACM 18, 311-317 (1975).
[CrossRef]

1967 (1)

1951 (1)

W. R. Scott, Fingerprint Mechanics, A Handbook: Fingerprints from Crime Scene to Courtroom (Thomas, 1951).

1760 (1)

J. H. Lambert, Photometria sive de mensura et gradibus luminus, colorum et umbrae (Eberhard Klett, 1760).

Alfano, R. R.

S. G. Demos and R. R. Alfano, "Optical fingerprinting using polarisation contrast improvement," Electron. Lett. 33, 582-584 (1997).
[CrossRef]

Andreou, A. G.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13, 195-203 (1997).
[CrossRef]

L. B. Wolff and A. G. Andreou, "Polarization camera sensors," Image Vis. Comput. 13, 497-510 (1995).
[CrossRef]

Bramble, S. K.

S. K. Bramble, K. E. Creer, W. G. Qiang, and B. Sheard, "Ultraviolet luminescence from latent fingerprints," Forensic Sci. Int. 59, 3-14 (1993).
[CrossRef] [PubMed]

Burt, J. A.

E. R. Menzel, J. A. Burt, and T. W. Sinor, "Laser detection of latent fingerprints: treatment with glue containing cyanoacrylate ester," J. Forensic Sci. 28, 307-317 (1983).

Cook, R. L.

R. L. Cook and K. E. Torrance, "A reflectance model for computer graphics," Comput. Graph. 15, 307-316 (1981).
[CrossRef]

Coppock, C. A.

C. A. Coppock, Contrast: An Investigator's Basic Reference Guide to Fingerprint Identification Concepts (Thomas, 2001).

Creer, K. E.

S. K. Bramble, K. E. Creer, W. G. Qiang, and B. Sheard, "Ultraviolet luminescence from latent fingerprints," Forensic Sci. Int. 59, 3-14 (1993).
[CrossRef] [PubMed]

K. E. Creer, "Operational experience in the detection and photography of latent fingerprints by argon-ion laser," Forensic Sci. Int. 23, 149-160 (1983).
[CrossRef]

Cubuk, M. C.

M. C. Cubuk and S. Saygi, "A rising value in evidence detection: ultraviolet light," Forensic Sci. Int. 136, 128 (2003).

Dalrymple, B. E.

B. E. Dalrymple and T. Menzies, "Computer enhancement of evidence through background noise suppression," J. Forensic Sci. 39, 537-546 (1994).

B. E. Dalrymple, J. M. Duff, and E. R. Menzel, "Inherent fingerprint luminescence--detection by laser," J. Forensic Sci. 22, 106-115 (1977).

Demos, S. G.

S. G. Demos and R. R. Alfano, "Optical fingerprinting using polarisation contrast improvement," Electron. Lett. 33, 582-584 (1997).
[CrossRef]

Duff, J. M.

E. R. Menzel and J. M. Duff, "Laser detection of latent fingerprints--treatment with fluorescers," J. Forensic Sci. 24, 96-100 (1979).
[PubMed]

B. E. Dalrymple, J. M. Duff, and E. R. Menzel, "Inherent fingerprint luminescence--detection by laser," J. Forensic Sci. 22, 106-115 (1977).

Engheta, N.

S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Polarization enhanced visual surveillance techniques," invited paper, in Proceedings of IEEE International Conference on Networking, Sensing and Control (IEEE Systems, Man and Cybernetics Society, 2004).

K. M. Yemelyanov, M. A. Lo, E. N. Pugh Jr., and N. Engheta, "Display of polarization information by coherently moving dots," Opt. Express 11, 1577-1584 (2003).
[CrossRef] [PubMed]

K. M. Yemelyanov, S.-S. Lin, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, "Bio-inspired display of polarization information using selected visual cues," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 71-84 (2003), Vol. 1, pp. 216-221.
[CrossRef]

J. S. Tyo, E. N. Pugh Jr., and N. Engheta, "Colorimetric representation for use with polarization-difference imaging of objects in scattering media," J. Opt. Soc. Am. A 15, 367-374 (1998).
[CrossRef]

J. S. Tyo, M. P. Rowe, E. N. Pugh Jr., and N. Engheta, "Target detection in optically scattering media by polarization-difference imaging," Appl. Opt. 35, 1855-1870 (1996).
[CrossRef] [PubMed]

M. P. Rowe, E. N. Pugh Jr., and N. Engheta, "Polarization-difference imaging: a biologically inspired technique for observation through scattering media," Opt. Lett. 20, 608-610 (1995).
[CrossRef] [PubMed]

Feiner, S. K.

J. D. Foley, A. vanDam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice (Addison-Wesley, 1990).

Fielding, K. H.

K. H. Fielding, J. L. Horner, and C. K. Makekau, "Optical fingerprint identification by binary joint transform correlation," Opt. Eng. 30, 1958-1961 (1991).
[CrossRef]

Foley, J. D.

J. D. Foley, A. vanDam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice (Addison-Wesley, 1990).

Fox, K. E.

E. R. Menzel and K. E. Fox, "Laser detection of latent fingerprints: preparation of fluorescent dusting powders and the feasibility of a portable system," J. Forensic Sci. 25, 150-153 (1980).
[PubMed]

German, E. R.

E. R. German, "Computer image enhancement of latent prints and hard copy output devices," in Proceedings of the International Forensic Symposium on Latent Prints (Laboratory and Identification Divisions, Federal Bureau of Investigation, 1987), pp. 151-152.

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2001).

Hecht, E.

E. Hecht, Optics (Addison-Wesley Longman, 1998).

Herod, D. W.

D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin," J. Forensic Sci. 27, 200-204 (1982).
[PubMed]

D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin followed by zinc chloride," J. Forensic Sci. 27, 513-518 (1982).
[PubMed]

Horner, J. L.

K. H. Fielding, J. L. Horner, and C. K. Makekau, "Optical fingerprint identification by binary joint transform correlation," Opt. Eng. 30, 1958-1961 (1991).
[CrossRef]

Horváth, G.

G. Horváth, "Reflection polarization patterns at flat water surfaces and their relevance for insect polarization vision," J. Theor. Biol. 175, 27-37 (1995).
[CrossRef] [PubMed]

Hughes, J. F.

J. D. Foley, A. vanDam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice (Addison-Wesley, 1990).

Ikeuchi, K.

S. K. Nayar, K. Ikeuchi, and T. Kanade, "Surface reflection: physical and geometrical perspectives," IEEE Trans. Pattern Anal. Mach. Intell. 13, 611-634 (1991).
[CrossRef]

Jain, A. K.

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2003).

Kanade, T.

S. K. Nayar, K. Ikeuchi, and T. Kanade, "Surface reflection: physical and geometrical perspectives," IEEE Trans. Pattern Anal. Mach. Intell. 13, 611-634 (1991).
[CrossRef]

Ko, T.

T. Ko, "Fingerprint enhancement by spectral analysis techniques," in Proceedings of the 31st Applied Imagery Pattern Recognition Workshop (IEEE Press, 2002), pp. 133-139.
[CrossRef]

Lambert, J. H.

J. H. Lambert, Photometria sive de mensura et gradibus luminus, colorum et umbrae (Eberhard Klett, 1760).

Lennard, C.

P. Margot and C. Lennard, Fingerprint Detection Techniques (Institut de police scientifique et de criminologie, Université de Lausanne, Lausanne, Switzerland, 1994).

Lennard, C. J.

C. J. Lennard and P. A. Margot, "Sequencing of reagents for the improved visualisation of latent fingerprints," J. Forensic Ident. 38, 197-210 (1988).

Lin, S.-S.

S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Polarization enhanced visual surveillance techniques," invited paper, in Proceedings of IEEE International Conference on Networking, Sensing and Control (IEEE Systems, Man and Cybernetics Society, 2004).

K. M. Yemelyanov, S.-S. Lin, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, "Bio-inspired display of polarization information using selected visual cues," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 71-84 (2003), Vol. 1, pp. 216-221.
[CrossRef]

Lo, M. A.

Luis, W. Q.

K. M. Yemelyanov, S.-S. Lin, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, "Bio-inspired display of polarization information using selected visual cues," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 71-84 (2003), Vol. 1, pp. 216-221.
[CrossRef]

Maio, D.

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2003).

Makekau, C. K.

K. H. Fielding, J. L. Horner, and C. K. Makekau, "Optical fingerprint identification by binary joint transform correlation," Opt. Eng. 30, 1958-1961 (1991).
[CrossRef]

Maltoni, D.

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2003).

Mancini, T. A.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13, 195-203 (1997).
[CrossRef]

Margot, P.

P. Margot and C. Lennard, Fingerprint Detection Techniques (Institut de police scientifique et de criminologie, Université de Lausanne, Lausanne, Switzerland, 1994).

Margot, P. A.

C. J. Lennard and P. A. Margot, "Sequencing of reagents for the improved visualisation of latent fingerprints," J. Forensic Ident. 38, 197-210 (1988).

Menzel, E. R.

E. R. Menzel, Fingerprint Detection with Lasers (Marcel Dekker, 1999).

E. R. Menzel, J. A. Burt, and T. W. Sinor, "Laser detection of latent fingerprints: treatment with glue containing cyanoacrylate ester," J. Forensic Sci. 28, 307-317 (1983).

D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin," J. Forensic Sci. 27, 200-204 (1982).
[PubMed]

D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin followed by zinc chloride," J. Forensic Sci. 27, 513-518 (1982).
[PubMed]

E. R. Menzel and K. E. Fox, "Laser detection of latent fingerprints: preparation of fluorescent dusting powders and the feasibility of a portable system," J. Forensic Sci. 25, 150-153 (1980).
[PubMed]

E. R. Menzel, "Laser detection of latent fingerprints--treatment with phosphorescers," J. Forensic Sci. 24, 582-585 (1979).

E. R. Menzel and J. M. Duff, "Laser detection of latent fingerprints--treatment with fluorescers," J. Forensic Sci. 24, 96-100 (1979).
[PubMed]

B. E. Dalrymple, J. M. Duff, and E. R. Menzel, "Inherent fingerprint luminescence--detection by laser," J. Forensic Sci. 22, 106-115 (1977).

Menzies, T.

B. E. Dalrymple and T. Menzies, "Computer enhancement of evidence through background noise suppression," J. Forensic Sci. 39, 537-546 (1994).

Nayar, S. K.

S. K. Nayar, K. Ikeuchi, and T. Kanade, "Surface reflection: physical and geometrical perspectives," IEEE Trans. Pattern Anal. Mach. Intell. 13, 611-634 (1991).
[CrossRef]

Olsen, R. D.

R. D. Olsen, Sr., Scott's Fingerprint Mechanics (Thomas, 1978).

Pfister, R.

R. Pfister, "The optical revelation of latent fingerprints," Fingerprint World 10, 64-70 (1985).

Phong, B.-T.

B.-T. Phong, "Illumination for computer generated pictures," Commun. ACM 18, 311-317 (1975).
[CrossRef]

Pouliquen, P.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13, 195-203 (1997).
[CrossRef]

Prabhakar, S.

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2003).

Pugh, E. N.

S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Polarization enhanced visual surveillance techniques," invited paper, in Proceedings of IEEE International Conference on Networking, Sensing and Control (IEEE Systems, Man and Cybernetics Society, 2004).

K. M. Yemelyanov, S.-S. Lin, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, "Bio-inspired display of polarization information using selected visual cues," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 71-84 (2003), Vol. 1, pp. 216-221.
[CrossRef]

K. M. Yemelyanov, M. A. Lo, E. N. Pugh Jr., and N. Engheta, "Display of polarization information by coherently moving dots," Opt. Express 11, 1577-1584 (2003).
[CrossRef] [PubMed]

J. S. Tyo, E. N. Pugh Jr., and N. Engheta, "Colorimetric representation for use with polarization-difference imaging of objects in scattering media," J. Opt. Soc. Am. A 15, 367-374 (1998).
[CrossRef]

J. S. Tyo, M. P. Rowe, E. N. Pugh Jr., and N. Engheta, "Target detection in optically scattering media by polarization-difference imaging," Appl. Opt. 35, 1855-1870 (1996).
[CrossRef] [PubMed]

M. P. Rowe, E. N. Pugh Jr., and N. Engheta, "Polarization-difference imaging: a biologically inspired technique for observation through scattering media," Opt. Lett. 20, 608-610 (1995).
[CrossRef] [PubMed]

Qiang, W. G.

S. K. Bramble, K. E. Creer, W. G. Qiang, and B. Sheard, "Ultraviolet luminescence from latent fingerprints," Forensic Sci. Int. 59, 3-14 (1993).
[CrossRef] [PubMed]

Rowe, M. P.

Saygi, S.

M. C. Cubuk and S. Saygi, "A rising value in evidence detection: ultraviolet light," Forensic Sci. Int. 136, 128 (2003).

Schwind, R.

R. Schwind, "Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notenecta glauca," Cell Tissue Res. 232, 53-63 (1983).
[CrossRef] [PubMed]

Scott, W. R.

W. R. Scott, Fingerprint Mechanics, A Handbook: Fingerprints from Crime Scene to Courtroom (Thomas, 1951).

Sheard, B.

S. K. Bramble, K. E. Creer, W. G. Qiang, and B. Sheard, "Ultraviolet luminescence from latent fingerprints," Forensic Sci. Int. 59, 3-14 (1993).
[CrossRef] [PubMed]

Sinor, T. W.

E. R. Menzel, J. A. Burt, and T. W. Sinor, "Laser detection of latent fingerprints: treatment with glue containing cyanoacrylate ester," J. Forensic Sci. 28, 307-317 (1983).

Sparrow, E. M.

Torrance, K. E.

R. L. Cook and K. E. Torrance, "A reflectance model for computer graphics," Comput. Graph. 15, 307-316 (1981).
[CrossRef]

K. E. Torrance and E. M. Sparrow, "Theory for off-specular reflection from roughened surfaces," J. Opt. Soc. Am. 57, 1105-1114 (1967).
[CrossRef]

Tyo, J. S.

vanDam, A.

J. D. Foley, A. vanDam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice (Addison-Wesley, 1990).

Wolff, L. B.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13, 195-203 (1997).
[CrossRef]

L. B. Wolff and A. G. Andreou, "Polarization camera sensors," Image Vis. Comput. 13, 497-510 (1995).
[CrossRef]

L. B. Wolff, "Relative brightness of specular and diffuse reflection," Opt. Eng. 33, 285-293 (1994).
[CrossRef]

L. B. Wolff, "Polarization camera for computer vision with a beam splitter," J. Opt. Soc. Am. A 11, 2935-2945 (1994).
[CrossRef]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2001).

Yemelyanov, K. M.

S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Polarization enhanced visual surveillance techniques," invited paper, in Proceedings of IEEE International Conference on Networking, Sensing and Control (IEEE Systems, Man and Cybernetics Society, 2004).

K. M. Yemelyanov, S.-S. Lin, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, "Bio-inspired display of polarization information using selected visual cues," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 71-84 (2003), Vol. 1, pp. 216-221.
[CrossRef]

K. M. Yemelyanov, M. A. Lo, E. N. Pugh Jr., and N. Engheta, "Display of polarization information by coherently moving dots," Opt. Express 11, 1577-1584 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Cell Tissue Res. (1)

R. Schwind, "Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notenecta glauca," Cell Tissue Res. 232, 53-63 (1983).
[CrossRef] [PubMed]

Commun. ACM (1)

B.-T. Phong, "Illumination for computer generated pictures," Commun. ACM 18, 311-317 (1975).
[CrossRef]

Comput. Graph. (1)

R. L. Cook and K. E. Torrance, "A reflectance model for computer graphics," Comput. Graph. 15, 307-316 (1981).
[CrossRef]

Electron. Lett. (1)

S. G. Demos and R. R. Alfano, "Optical fingerprinting using polarisation contrast improvement," Electron. Lett. 33, 582-584 (1997).
[CrossRef]

Fingerprint World (1)

R. Pfister, "The optical revelation of latent fingerprints," Fingerprint World 10, 64-70 (1985).

Forensic Sci. Int. (3)

M. C. Cubuk and S. Saygi, "A rising value in evidence detection: ultraviolet light," Forensic Sci. Int. 136, 128 (2003).

K. E. Creer, "Operational experience in the detection and photography of latent fingerprints by argon-ion laser," Forensic Sci. Int. 23, 149-160 (1983).
[CrossRef]

S. K. Bramble, K. E. Creer, W. G. Qiang, and B. Sheard, "Ultraviolet luminescence from latent fingerprints," Forensic Sci. Int. 59, 3-14 (1993).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. K. Nayar, K. Ikeuchi, and T. Kanade, "Surface reflection: physical and geometrical perspectives," IEEE Trans. Pattern Anal. Mach. Intell. 13, 611-634 (1991).
[CrossRef]

IEEE Trans. Rob. Autom. (1)

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13, 195-203 (1997).
[CrossRef]

Image Vis. Comput. (1)

L. B. Wolff and A. G. Andreou, "Polarization camera sensors," Image Vis. Comput. 13, 497-510 (1995).
[CrossRef]

J. Forensic Ident. (1)

C. J. Lennard and P. A. Margot, "Sequencing of reagents for the improved visualisation of latent fingerprints," J. Forensic Ident. 38, 197-210 (1988).

J. Forensic Sci. (8)

B. E. Dalrymple and T. Menzies, "Computer enhancement of evidence through background noise suppression," J. Forensic Sci. 39, 537-546 (1994).

E. R. Menzel, J. A. Burt, and T. W. Sinor, "Laser detection of latent fingerprints: treatment with glue containing cyanoacrylate ester," J. Forensic Sci. 28, 307-317 (1983).

B. E. Dalrymple, J. M. Duff, and E. R. Menzel, "Inherent fingerprint luminescence--detection by laser," J. Forensic Sci. 22, 106-115 (1977).

E. R. Menzel and J. M. Duff, "Laser detection of latent fingerprints--treatment with fluorescers," J. Forensic Sci. 24, 96-100 (1979).
[PubMed]

E. R. Menzel, "Laser detection of latent fingerprints--treatment with phosphorescers," J. Forensic Sci. 24, 582-585 (1979).

E. R. Menzel and K. E. Fox, "Laser detection of latent fingerprints: preparation of fluorescent dusting powders and the feasibility of a portable system," J. Forensic Sci. 25, 150-153 (1980).
[PubMed]

D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin," J. Forensic Sci. 27, 200-204 (1982).
[PubMed]

D. W. Herod and E. R. Menzel, "Laser detection of latent fingerprints: ninhydrin followed by zinc chloride," J. Forensic Sci. 27, 513-518 (1982).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Theor. Biol. (1)

G. Horváth, "Reflection polarization patterns at flat water surfaces and their relevance for insect polarization vision," J. Theor. Biol. 175, 27-37 (1995).
[CrossRef] [PubMed]

Opt. Eng. (2)

L. B. Wolff, "Relative brightness of specular and diffuse reflection," Opt. Eng. 33, 285-293 (1994).
[CrossRef]

K. H. Fielding, J. L. Horner, and C. K. Makekau, "Optical fingerprint identification by binary joint transform correlation," Opt. Eng. 30, 1958-1961 (1991).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

K. M. Yemelyanov, S.-S. Lin, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, "Bio-inspired display of polarization information using selected visual cues," in Polarization Science and Remote Sensing, J. A. Shaw and J. S. Tyo, eds., Proc. SPIE 5158, 71-84 (2003), Vol. 1, pp. 216-221.
[CrossRef]

Other (16)

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2001).

J. H. Lambert, Photometria sive de mensura et gradibus luminus, colorum et umbrae (Eberhard Klett, 1760).

E. Hecht, Optics (Addison-Wesley Longman, 1998).

J. D. Foley, A. vanDam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice (Addison-Wesley, 1990).

T. Ko, "Fingerprint enhancement by spectral analysis techniques," in Proceedings of the 31st Applied Imagery Pattern Recognition Workshop (IEEE Press, 2002), pp. 133-139.
[CrossRef]

S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, "Polarization enhanced visual surveillance techniques," invited paper, in Proceedings of IEEE International Conference on Networking, Sensing and Control (IEEE Systems, Man and Cybernetics Society, 2004).

E. R. Menzel, Fingerprint Detection with Lasers (Marcel Dekker, 1999).

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2003).

W. R. Scott, Fingerprint Mechanics, A Handbook: Fingerprints from Crime Scene to Courtroom (Thomas, 1951).

R. D. Olsen, Sr., Scott's Fingerprint Mechanics (Thomas, 1978).

P. Margot and C. Lennard, Fingerprint Detection Techniques (Institut de police scientifique et de criminologie, Université de Lausanne, Lausanne, Switzerland, 1994).

H.C.Lee and R.E.Gaensslen, eds., Advances in Fingerprint Technology (CRC Press, 1994).

H.C.Lee and R.E.Gaensslen, eds., Advances in Fingerprint Technology, 2nd ed. (CRC Press, 2001).
[CrossRef]

C. A. Coppock, Contrast: An Investigator's Basic Reference Guide to Fingerprint Identification Concepts (Thomas, 2001).

Federal Bureau of Investigation, The Science of Fingerprints: Classification and Uses (U.S. Government Printing Office, 1984).

E. R. German, "Computer image enhancement of latent prints and hard copy output devices," in Proceedings of the International Forensic Symposium on Latent Prints (Laboratory and Identification Divisions, Federal Bureau of Investigation, 1987), pp. 151-152.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of the physical principles concerning noncontact latent fingerprint enhancement and lifting. (a) Macroscopic reflection from a surface consists of two distinct kinds, i.e., specular and diffuse. For specular reflection the angles of incidence and reflection are equal, while for the diffuse case the reflected intensity may approximately have an effectively uniform distribution over all directions in a hemisphere. Most surfaces exhibit both types of reflection, but one type may be stronger than the other. (b) Partial polarization of specularly reflected light from a semitransparent dielectric surface. It is known that the light reflected from the smooth surface is partially polarized with the polarization being perpendicular to the plane of reflection. (c) Live human skin is kept soft and pliable by the constant oily secretion of hypodermic glands. The ridge area of the skin pattern tends to leave a dielectric residue on a surface touched by a finger. (d) The residue left in (c) forms the latent fingerprint. Using a method that generates a sufficient contrast difference between the latent fingerprint and the rest of the surface in the camera image, a successful detection and extraction can be achieved without applying physical or chemical treatments to the surface. Note that the camera position in (d) is oriented in a such a way that it captures the specular component of reflected light from the clean surface only while the specular reflection component of the residue is not captured. Additionally, when a finger touches a pliable dielectric surface it could cause a plastic print on the surface. In this case the difference in the surface normal caused by the plastic print ridges will serve the same purpose of creating contrast in intensity and polarization under proper lighting.

Fig. 2
Fig. 2

Drawings depicting the same setup as in Fig. 1d but with relative distances and object sizes drawn to scale to explain the effects of a real light source compared with an idealized collimated light source. In both (a) and (b), L is the position of the light source; O is the orthogonal projection on the surface for L; P is a ridge or valley point around the center of the fingerprint pattern; C is the camera view point. I D is the irradiance of the point P from diffuse reflection and recorded by the camera at C. It is typically weak and is also represented here as the small arrow(s) along the direction PC. I S is the irradiance of the point P from specular reflection and recorded by the camera at C. It is typically much stronger compared with irradiance from diffuse reflection, and is depicted here by the large arrow along the direction PC. (a) The simple condition when the light source is effectively collimated along the direction of LP. (b) The situation for when a noncollimated extended light source is used. The I S remains the same as in (a) but I D is stronger due to the contribution from more point sources. The end result is decreased contrast between I S and I D . However, since only I S contains a polarized component, the polarization-based method is equally effective in both conditions.

Fig. 3
Fig. 3

Example experimental setup overview for Fig. 5.

Fig. 4
Fig. 4

Picture of the three sample items bearing latent fingerprints: a hardcover book, a plastic CD case with underlying insert patterns, and a stainless steel blade of a Swiss army knife. Experimental results on these items are presented in Figs. 8, 9, 10.

Fig. 5
Fig. 5

Fingerprint detection experiment on a sample surface, a metal case of a pump painted orange. (a) Sample surface picture taken under ordinary lighting, linearly scaled. (b) Same as (a), but by histogram equalization for contrast enhancement. (c) The same surface as (a) and (b) taken under our special lighting setup in which the clean surface without fingerprint residue is showing strong specular reflection. The fingerprint residue disrupts the specular reflection geometry so its pattern is revealed as a dark diffuse reflection pattern. This image is linearly rescaled. (d) Same as (c), only the contrast enhancement is done using histogram equalization. (e) Zoom-in view of the fingerprint revealed in (c) and (d). (f) Further zoom-in view of (e), showing the very fine details of the recovered fingerprint pattern. (g) The same fingerprint being lifted with tape after being dusted with forensic black magnetic powder. (h) The fingerprint lifted using the traditional powdering and tape lifting. The fingerprint lifted by the proposed new method as shown in (e) and (f) is cleaner.

Fig. 6
Fig. 6

Paper calendar cover with underlying picture. (a) A fingerprint is revealed by specular lighting. (b) Same item as in (a) but with polarization processing. This is the I A image; background is completely removed. (c) Zoom-in view of the fingerprint in (b).

Fig. 7
Fig. 7

Soft plastic CD sleeve with white cotton lining underneath. (a) Under ordinary lighting. (b) Polarization I A image. The latent fingerprint on the CD sleeve is exposed in high contrast. (c) Zoom-in view of the fingerprint in (b). (d) The periodic pattern caused by the cotton lining as seen in (c) can be removed by Fourier-transform processing.

Fig. 8
Fig. 8

(a) Close-up view of the hardcover book bearing a latent fingerprint under normal (no polarizer, no special lighting arrangements) viewing conditions. Note that this image has undergone digital linear contrast enhancement but the fingerprint mark is still not visible. (b) The same area as in (a) but taken with our specially arranged specular lighting condition. The latent fingerprints are revealed. (c) The same area as in (a) but taken with our specially arranged specular lighting condition plus polarization image processing. This is the I A image linearly rescaled to fit an 8   bit display. The latent fingerprints are revealed, and at the same time the background pattern from the book title is greatly suppressed.

Fig. 9
Fig. 9

(a) Close-up view of the plastic CD case with insert pattern under normal viewing conditions. No fingerprint is visible although the image has undergone digital linear contrast enhancement. (b) The same area of the plastic CD cover with the insert pattern as in (a), but taken with our specially arranged specular lighting condition with three different polarizer orientations and then the degree of polarization image computed. The latent fingerprints are revealed. (c) The same area of the plastic CD cover with the insert pattern as in (a), but taken with our specially arranged specular lighting condition plus polarization image processing. This is the I A image linearly stretched to fit an 8   bit display. The latent fingerprints are revealed and at the same time the background pattern from the CD insert is greatly suppressed. The upper right corner of images (b) and (c) appears brighter because those areas are showing the specular reflection image of the light source. This is an example where the fingerprint stained area, rather than the adjacent clean surface, shows specular reflection.

Fig. 10
Fig. 10

(a) Close-up view of the stainless-steel Swiss army knife under normal viewing conditions. No fingerprint is visible although the image has undergone digital linear contrast enhancement. (b) The same area of the stainless-steel Swiss army knife as in (a) but taken with our specially arranged specular lighting condition plus polarization processing. The latent fingerprints are revealed in the degree of polarization image. (c) The same area of the stainless-steel Swiss army knife as in (a), but taken with our specially arranged specular lighting condition plus polarization image processing. This is the I A image. The latent fingerprints are revealed and at the same time the background pattern from the book cover is greatly suppressed.

Fig. 11
Fig. 11

(a) Transparent tape under normal viewing conditions. No fingerprint is visible. The tape itself is barely recognizable since it is transparent. (b) Fingerprint found on the sticky side of the tape using specular reflection. (c) Fingerprint found on the sticky side of the tape using polarization. The image is the I A image. Note that no ordinary digital contrast enhancement is used on any of the images in this figure.

Fig. 12
Fig. 12

(a) Piece of hardened epoxy resin under ordinary lighting conditions and view. No fingerprint is visible even after a linear rescale to fit an 8   bit display. (b) Plastic fingerprint mark revealed on the same piece of hardened epoxy resin as in (a) in the degree of polarization image. No ordinary digital contrast enhancement is used on this image.

Fig. 13
Fig. 13

Comparison of fingerprint lifting at different view angles (varying both the incident angle of the light source and the view angle of the camera simultaneously to maintain the specular reflection condition described in our theory). All images are for the same fingerprint taken within 1 h of the experiment session. View angles (the angle between the surface normal of the sample to the view direction of the camera) are 30 deg for (a) and (b), 45 deg for (c) and (d), and 75 deg for (e) and (f). Images (a), (c), and (e) are contrast enhanced (linear gray-level stretch) U, representing the specular-reflection-based method. Images (b), (d), and (f) are contrast enhanced (linear gray-level stretch) A, representing the polarization-based method. It is clear that at a near-grazing angle ( 75 deg ) it is difficult to see the fingerprint pattern. At near-frontal view ( 30 deg ) the polarization signal is very weak, so after contrast enhancement the result is very noisy. We get the best results at 45 deg .

Fig. 14
Fig. 14

Exact same fingerprint target and the same experiment as shown in Fig. 13, with only one important difference: The pictures shown here were taken with all ordinary room light shut off and the door shut to create a almost darkroom environment. We would like to point out that all experiment pictures shown in this paper except pictures in this figure were taken without any particular ambient light control, i.e., the room lights from the ceiling were not shut off and doors were not closed. It is clear that our method performs equally well with a reasonable amount of ambient light and does not need a special photography darkroom. The corresponding images in Fig. 13 look practically identical. We used a flux meter to measure the irradiance difference at the surface of the fingerprint sample for both ambient light on and ambient light off, and the readings are around 2000 and 1900 lux, respectively. It is clear that as long as our controlled light source dominates the irradiance at the surface of interest, the ambient light has little effect on the effectiveness of our method and thus we can safely apply our method directly at many crime scenes without the need to bring the sample to a dedicated laboratory darkroom.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( φ ) = I U + I A cos [ 2 ( θ φ ) ] = I U { 1 + p cos [ 2 ( θ φ ) ] } ,
I U = ( I 0 + I 90 ) 2 ,
I A = ( I 45 I U ) 2 + ( I U I 90 ) 2 ,
θ = arctan [ ( I 45 I U ) ( I U I 90 ) ] 2 .
I = I p k d cos θ = I p k d ( n ̂ l ̂ ) ,
I λ = I a λ k a O d λ + f att I p λ [ k d O d λ cos θ + W ( θ ) cos n α ] ,
r ( E 0 r E 0 i ) = n i cos θ i n t cos θ t n i cos θ i + n t cos θ t = sin ( θ i θ t ) sin ( θ i + θ t ) ,
r ( E 0 r E 0 i ) = n t cos θ i n i cos θ t n i cos θ t + n t cos θ i = tan ( θ i θ t ) tan ( θ i + θ t ) ,
tan θ B = n t n i .

Metrics