Abstract

We investigate the performance of the method proposed in Part I of this paper in several situations of interest in diffuse optical imaging of biological tissues. Monte Carlo simulations were extensively used to validate the approximate scaling relationship between higher-order and first-order self moments of the generalized temporal point-spread function in semi-infinite and slab geometry. More specifically we found that in a wide range of cases the scaling parameters c1, c2, c3 [see Eq. (36) of Part I] lie in the intervals (1.48, 1.58), (3.1, 3.7), and (8.5, 11.5), respectively. The scaling relationships between higher-order and first-order self moments are useful for the calculation of the perturbation of a single defect in a straightforward way. Although these relationships are more accurate for inclusions of linear size less than 6mm, their performance is also studied for larger inclusions. A good agreement, to within 10%, was found between the perturbations of single and multiple defects calculated with the proposed method and those obtained by Monte Carlo simulations. We also provide formulas for the calculation of the moments up to the fourth order for which it is clear how lower-order moments can be used for the calculation of higher-order moments.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription