Abstract

Several lines of evidence suggest that the image statistics of the environment shape visual abilities. To date, the image statistics of natural scenes and faces have been well characterized using Fourier analysis. We employed Fourier analysis to characterize images of signs in American Sign Language (ASL). These images are highly relevant to signers who rely on ASL for communication, and thus the image statistics of ASL might influence signers’ visual abilities. Fourier analysis was conducted on 105 static images of signs, and these images were compared with analyses of 100 natural scene images and 100 face images. We obtained two metrics from our Fourier analysis: mean amplitude and entropy of the amplitude across the image set (which is a measure from information theory) as a function of spatial frequency and orientation. The results of our analyses revealed interesting differences in image statistics across the three different image sets, setting up the possibility that ASL experience may alter visual perception in predictable ways. In addition, for all image sets, the mean amplitude results were markedly different from the entropy results, which raises the interesting question of which aspect of an image set (mean amplitude or entropy of the amplitude) is better able to account for known visual abilities.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Blakemore and G. F. Cooper, "Development of the brain depends on the visual environment," Nature 228, 477-478 (1970).
    [CrossRef] [PubMed]
  2. C. Blakemore and G. F. Cooper, "Modification of the visual cortex by experience," Brain Res. 31, 366 (1971).
    [CrossRef] [PubMed]
  3. M. P. Stryker, H. Sherk, A. G. Leventhal, and H. V. Hirsch, "Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours," J. Neurophysiol. 41, 896-909 (1978).
    [PubMed]
  4. J. Gwiazda, I. Mohindra, S. Brill, and R. Held, "Infant astigmatism and meridional amblyopia," Vision Res. 25, 1269-1276 (1985).
    [CrossRef] [PubMed]
  5. D. E. Mitchell, R. D. Freeman, M. Millodot, and G. Haegerstrom, "Meridional amblyopia: evidence for modification of the human visual system by early visual experience," Vision Res. 13, 535-558 (1973).
    [CrossRef] [PubMed]
  6. S. Appelle, "Perception and discrimination as a function of stimulus orientation: the 'oblique effect' in man and animals," Psychol. Bull. 78, 266-278 (1972).
    [CrossRef] [PubMed]
  7. F. W. Campbell, J. J. Kulikowski, and J. Levinson, "The effect of orientation on the visual resolution of gratings," J. Physiol. (London) 187, 427-436 (1966).
  8. D. E. Mitchell, R. D. Freeman, and G. Westheimer, "Effect of orientation on the modulation sensitivity for interference fringes on the retina," J. Opt. Soc. Am. 57, 246-249 (1967).
    [CrossRef] [PubMed]
  9. S. Sokol, A. Moskowitz, and V. Hansen, "Electrophysiological evidence for the oblique effect in human infants," Invest. Ophthalmol. Visual Sci. 28, 731-735 (1987).
  10. S. Sokol, A. Moskowitz, and V. Hansen, "Evoked potential and preferential looking correlates of the oblique effect in 3-month-old infants," Doc. Ophthalmol. 71, 321-328 (1989).
    [CrossRef] [PubMed]
  11. D. Y. Teller, R. Morse, R. Borton, and D. Regal, "Visual acuity for vertical and diagonal gratings in human infants," Vision Res. 14, 1433-1439 (1974).
    [CrossRef] [PubMed]
  12. R. J. Baddeley and P. J. Hancock, "A statistical analysis of natural images matches psychophysically derived orientation tuning curves," Proc. R. Soc. London, Ser. B 246, 219-223 (1991).
    [CrossRef]
  13. D. M. Coppola, H. R. Purves, A. N. McCoy, and D. Purves, "The distribution of oriented contours in the real world," Proc. Natl. Acad. Sci. U.S.A. 95, 4002-4006 (1998).
    [CrossRef] [PubMed]
  14. M. S. Keil and G. Cristobal, "Separating the chaff from the wheat: possible origins of the oblique effect," J. Opt. Soc. Am. A 17, 697-710 (2000).
    [CrossRef]
  15. E. Switkes, M. J. Mayer, and J. A. Sloan, "Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis," Vision Res. 18, 1393-1399 (1978).
    [CrossRef] [PubMed]
  16. A. van der Schaaf and J. H. van Hateren, "Modelling the power spectra of natural images: statistics and information," Vision Res. 36, 2759-2770 (1996).
    [CrossRef] [PubMed]
  17. B. C. Hansen and E. A. Essock, "A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes," J. Vision 4, 1044-1060 (2004).
    [CrossRef]
  18. A. Torralba and A. Oliva, "Statistics of natural image categories," Network 14, 391-412 (2003).
    [CrossRef] [PubMed]
  19. R. C. Annis and B. Frost, "Human visual ecology and orientation anisotropies in acuity," Science 182, 729-731 (1973).
    [CrossRef] [PubMed]
  20. R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
    [CrossRef] [PubMed]
  21. G. J. Burton and I. R. Moorhead, "Color and spatial structure in natural scenes," Appl. Opt. 26, 157-170 (1987).
    [CrossRef] [PubMed]
  22. D. J. Field, "Relations between the statistics of natural images and the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379-2394 (1987).
    [CrossRef] [PubMed]
  23. D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling in the woods," Phys. Rev. Lett. 73, 814-817 (1994).
    [CrossRef] [PubMed]
  24. D. J. Tolhurst, Y. Tadmor, and T. Chao, "Amplitude spectra of natural images," Ophthalmic Physiol. Opt. 12, 229-232 (1992).
    [CrossRef] [PubMed]
  25. D. C. Knill, D. Field, and D. Kersten, "Human discrimination of fractal images," J. Opt. Soc. Am. A 7, 1113-1123 (1990).
    [CrossRef] [PubMed]
  26. C. A. Parraga, T. Troscianko, and D. J. Tolhurst, "The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model," Vision Res. 45, 3145-3168 (2005).
    [CrossRef] [PubMed]
  27. Y. Tadmor and D. J. Tolhurst, "Discrimination of changes in the second-order statistics of natural and synthetic images," Vision Res. 34, 541-554 (1994).
    [CrossRef] [PubMed]
  28. D. J. Tolhurst and Y. Tadmor, "Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural images," Perception 29, 1087-1100 (2000).
    [CrossRef]
  29. J. Atick and A. Redlich, "What does the retina know about natural scenes?" Neural Comput. 4, 196-210 (1992).
    [CrossRef]
  30. P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
    [CrossRef] [PubMed]
  31. B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature 381, 607-609 (1996).
    [CrossRef] [PubMed]
  32. Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
    [CrossRef] [PubMed]
  33. M. V. Srinivasan, S. B. Laughlin, and A. Dubs, "Predictive coding: a fresh view of inhibition in the retina," Proc. R. Soc. London, Ser. B 216, 427-459 (1982).
    [CrossRef]
  34. E. P. Simoncelli and B. A. Olshausen, "Natural image statistics and neural representation," Annu. Rev. Neurosci. 24, 1193-1216 (2001).
    [CrossRef] [PubMed]
  35. W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly, "Edge co-occurrence in natural images predicts contour grouping performance," Vision Res. 41, 711-724 (2001).
    [CrossRef] [PubMed]
  36. B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998).
    [CrossRef]
  37. C. C. Chiao, D. Osorio, M. Vorobyev, and T. W. Cronin, "Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra," J. Opt. Soc. Am. A 17, 1713-1721 (2000).
    [CrossRef]
  38. J. N. Lythgoe and J. C. Partridge, "Visual pigments and the acquisition of visual information," J. Exp. Biol. 146, 1-20 (1989).
    [PubMed]
  39. D. Osorio and M. Vorobyev, "Colour vision as an adaptation to frugivory in primates," Proc. R. Soc. London, Ser. B 263, 593-599 (1996).
    [CrossRef]
  40. J. Pokorny and V. C. Smith, "Evaluation of single-pigment shift model of anomalous trichromacy," J. Opt. Soc. Am. 67, 1196-1209 (1977).
    [CrossRef] [PubMed]
  41. J. D. Mollon, "Color vision," Annu. Rev. Physiol. 33, 41-85 (1982).
  42. M. A. Webster, "Pattern selective adaptation in color and form perception," in The Visual Neurosciences, M.L.Chalupa and S.J.Werner, eds. (MIT, 2003), pp. 936-947.
  43. M. A. Webster and J. D. Mollon, "Adaptation and the color statistics of natural images," Vision Res. 37, 3283-3298 (1997).
    [CrossRef]
  44. N. Yendrikhovskij, "Computing color categories from statistics of natural images," J. Imaging Sci. Technol. 45, 409-417 (2001).
  45. S. T. Chung, "The effect of letter spacing on reading speed in central and peripheral vision," Invest. Ophthalmol. Visual Sci. 43, 1270-1276 (2002).
  46. N. J. Majaj, D. G. Pelli, P. Kurshan, and M. Palomares, "The role of spatial frequency channels in letter identification," Vision Res. 42, 1165-1184 (2002).
    [CrossRef] [PubMed]
  47. D. H. Parish and G. Sperling, "Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination," Vision Res. 31, 1399-1415 (1991).
    [CrossRef] [PubMed]
  48. J. A. Solomon and D. G. Pelli, "The visual filter mediating letter identification," Nature 369, 395-397 (1994).
    [CrossRef] [PubMed]
  49. E. Poder, "Spatial-frequency spectra of printed characters and human visual perception," Vision Res. 43, 1507-1511 (2003).
    [CrossRef] [PubMed]
  50. C. J. Brozinsky and D. Bavelier, "Motion velocity thresholds in deaf signers: changes in lateralization but not in overall sensitivity," Brain Res. Cognit. Brain Res. 21, 1-10 (2004).
    [CrossRef]
  51. D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001).
    [PubMed]
  52. D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).
  53. K. Emmorey, E. Klima, and G. Hickok, "Mental rotation within linguistic and non-linguistic domains in users of American sign language," Cognition 68, 221-246 (1998).
    [CrossRef] [PubMed]
  54. K. Emmorey and S. M. Kosslyn, "Enhanced image generation abilities in deaf signers: a right hemisphere effect," Brain Cogn. 32, 28-44 (1996).
    [CrossRef] [PubMed]
  55. R. G. Bosworth and K. R. Dobkins, "Left hemisphere dominance for motion processing in deaf signers," Psychol. Sci. 10, 256-262 (1999).
    [CrossRef]
  56. R. G. Bosworth and K. R. Dobkins, "Visual field asymmetries for motion processing in deaf and hearing signers," Brain Cogn 49, 170-181 (2002).
    [CrossRef] [PubMed]
  57. D. Brentari, A Prosodic Model of American Sign Language Phonology (MIT, 1998).
  58. D. Perlmutter, "Sonority and syllable structure in American Sign Language," Linguist. Inquiry 23, 407-442 (1992).
  59. R. B. Wilbur and A. M. Martinez, "Physical correlates of prosodic structure in American Sign Language," presented at the Meeting of the Chicago Linguistics Society, April 25-27, 2002.
  60. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).
    [CrossRef]
  61. J. J. Atick, "Could information theory provide an ecological theory for sensory processing?" Network Comput. Neural Syst. 3, 231-251 (1992).
    [CrossRef]
  62. T. R. Riedl and G. Sperling, "Spatial-frequency bands in complex visual stimuli: American Sign Language," J. Opt. Soc. Am. A 5, 606-616 (1988).
    [CrossRef] [PubMed]
  63. E. A. Essock, J. K. DeFord, B. C. Hansen, and M. J. Sinai, "Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect," Vision Res. 43, 1329-1335 (2003).
    [CrossRef] [PubMed]
  64. P. Eccarius and D. Brentari, "Symmetry and dominance: a cross-linguistic study of signs and classifier constructions," Lingua (to be published); www.sciencedirect.com.
  65. R. G. Bosworth, C. E. Wright, M. S. Bartlett, D. P. Corina, and K. R. Dobkins, "Characterization of the visual properties of spatial frequency and speed in ASL signs," in Cross-Linguistic Perspectives in Sign Language Research. Selected Papers from TISLR 2000, A.E.Baker, B.van den Bogaerde, and O.Crasborn, eds. (Signum, 2003), pp. 265-282.
  66. A. M. Martinez and R. Benavente, "The AR face database," CVC Tech. Rep. 24 (Computer Vision Center, Universitat Autònama de Barcelona, 1998) Available at http://rvl1.ecn.purdue.edu/~aleix/ar.html.
  67. J. H. van Hateren and A. van der Schaaf, "Independent component filters of natural images compared with simple cells in primary visual cortex," Proc. R. Soc. London, Ser. B 265, 359-366 (1998).
    [CrossRef]
  68. N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
    [CrossRef]
  69. J. G. Daugman, "Entropy reduction and decorrelation in visual coding by oriented neural receptive fields," IEEE Trans. Biomed. Eng. 36, 107-114 (1989).
    [CrossRef] [PubMed]
  70. D. Field, "What is the goal of sensory coding?" Neural Comput. 6, 559-601 (1994).
    [CrossRef]
  71. J. Huang and D. Mumford, "Statistics of natural images and models," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE Press, 1999), pp. 541-547.
  72. M. S. Lewicki, "Efficient coding of natural sounds," Nat. Neurosci. 5, 356-363 (2002).
    [CrossRef] [PubMed]
  73. A. J. Bell and T. J. Sejnowski, "The 'independent components' of natural scenes are edge filters," Vision Res. 37, 3327-3338 (1997).
    [CrossRef]
  74. M. G. Thomson, "Beats, kurtosis and visual coding," Network 12, 271-287 (2001).
    [PubMed]
  75. D. Kersten, "Predictability and redundancy of natural images," J. Opt. Soc. Am. A 4, 2395-2400 (1987).
    [CrossRef] [PubMed]
  76. D. L. Ruderman, "The statistics of natural images," Network Comput. Neural Syst. 5, 517-548 (1994).
    [CrossRef]
  77. D. L. Ruderman, "Origins of scaling in natural images," Vision Res. 37, 3385-3398 (1997).
    [CrossRef]
  78. R. M. Balboa, C. W. Tyler, and N. M. Grzywacz, "Occlusions contribute to scaling in natural images," Vision Res. 41, 955-964 (2001).
    [CrossRef] [PubMed]
  79. E. P. Simoncelli and O. Schwartz, "Modeling surround suppression in V1 neurons with a statistically-derived normalization model," Adv. Neural Inf. Process. Syst. 11, 153-159 (1999).
  80. N. P. Costen, D. M. Parker, and I. Craw, "Effects of high-pass and low-pass spatial filtering on face identification," Percept. Psychophys. 58, 602-612 (1996).
    [CrossRef] [PubMed]
  81. J. Gold, P. J. Bennett, and A. B. Sekuler, "Identification of band-pass filtered letters and faces by human and ideal observers," Vision Res. 39, 3537-3560 (1999).
    [CrossRef]
  82. E. Peli, E. Lee, C. L. Trempe, and S. Buzney, "Image enhancement for the visually impaired: the effects of enhancement on face recognition," J. Opt. Soc. Am. A 11, 1929-1939 (1994).
    [CrossRef]
  83. T. Tieger and L. Ganz, "Recognition of faces in the presence of two-dimensional sinusoidal masks," Percept. Psychophys. 26, 163-167 (1979).
    [CrossRef]
  84. T. Hayes, M. C. Morrone, and D. C. Burr, "Recognition of positive and negative bandpass-filtered images," Perception 15, 595-602 (1986).
    [CrossRef] [PubMed]
  85. E. M. Finney and K. R. Dobkins, "Visual contrast sensitivity in deaf versus hearing populations: exploring the perceptual consequences of auditory deprivation and experience with a visual language," Brain Res. Cognit. Brain Res. 11, 171-183 (2001).
    [CrossRef]

2005 (1)

C. A. Parraga, T. Troscianko, and D. J. Tolhurst, "The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model," Vision Res. 45, 3145-3168 (2005).
[CrossRef] [PubMed]

2004 (2)

B. C. Hansen and E. A. Essock, "A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes," J. Vision 4, 1044-1060 (2004).
[CrossRef]

C. J. Brozinsky and D. Bavelier, "Motion velocity thresholds in deaf signers: changes in lateralization but not in overall sensitivity," Brain Res. Cognit. Brain Res. 21, 1-10 (2004).
[CrossRef]

2003 (7)

E. Poder, "Spatial-frequency spectra of printed characters and human visual perception," Vision Res. 43, 1507-1511 (2003).
[CrossRef] [PubMed]

M. A. Webster, "Pattern selective adaptation in color and form perception," in The Visual Neurosciences, M.L.Chalupa and S.J.Werner, eds. (MIT, 2003), pp. 936-947.

E. A. Essock, J. K. DeFord, B. C. Hansen, and M. J. Sinai, "Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect," Vision Res. 43, 1329-1335 (2003).
[CrossRef] [PubMed]

R. G. Bosworth, C. E. Wright, M. S. Bartlett, D. P. Corina, and K. R. Dobkins, "Characterization of the visual properties of spatial frequency and speed in ASL signs," in Cross-Linguistic Perspectives in Sign Language Research. Selected Papers from TISLR 2000, A.E.Baker, B.van den Bogaerde, and O.Crasborn, eds. (Signum, 2003), pp. 265-282.

A. Torralba and A. Oliva, "Statistics of natural image categories," Network 14, 391-412 (2003).
[CrossRef] [PubMed]

R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
[CrossRef] [PubMed]

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

2002 (5)

R. G. Bosworth and K. R. Dobkins, "Visual field asymmetries for motion processing in deaf and hearing signers," Brain Cogn 49, 170-181 (2002).
[CrossRef] [PubMed]

R. B. Wilbur and A. M. Martinez, "Physical correlates of prosodic structure in American Sign Language," presented at the Meeting of the Chicago Linguistics Society, April 25-27, 2002.

M. S. Lewicki, "Efficient coding of natural sounds," Nat. Neurosci. 5, 356-363 (2002).
[CrossRef] [PubMed]

S. T. Chung, "The effect of letter spacing on reading speed in central and peripheral vision," Invest. Ophthalmol. Visual Sci. 43, 1270-1276 (2002).

N. J. Majaj, D. G. Pelli, P. Kurshan, and M. Palomares, "The role of spatial frequency channels in letter identification," Vision Res. 42, 1165-1184 (2002).
[CrossRef] [PubMed]

2001 (7)

D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001).
[PubMed]

N. Yendrikhovskij, "Computing color categories from statistics of natural images," J. Imaging Sci. Technol. 45, 409-417 (2001).

E. P. Simoncelli and B. A. Olshausen, "Natural image statistics and neural representation," Annu. Rev. Neurosci. 24, 1193-1216 (2001).
[CrossRef] [PubMed]

W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly, "Edge co-occurrence in natural images predicts contour grouping performance," Vision Res. 41, 711-724 (2001).
[CrossRef] [PubMed]

M. G. Thomson, "Beats, kurtosis and visual coding," Network 12, 271-287 (2001).
[PubMed]

R. M. Balboa, C. W. Tyler, and N. M. Grzywacz, "Occlusions contribute to scaling in natural images," Vision Res. 41, 955-964 (2001).
[CrossRef] [PubMed]

E. M. Finney and K. R. Dobkins, "Visual contrast sensitivity in deaf versus hearing populations: exploring the perceptual consequences of auditory deprivation and experience with a visual language," Brain Res. Cognit. Brain Res. 11, 171-183 (2001).
[CrossRef]

2000 (6)

Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
[CrossRef] [PubMed]

D. J. Tolhurst and Y. Tadmor, "Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural images," Perception 29, 1087-1100 (2000).
[CrossRef]

M. S. Keil and G. Cristobal, "Separating the chaff from the wheat: possible origins of the oblique effect," J. Opt. Soc. Am. A 17, 697-710 (2000).
[CrossRef]

C. C. Chiao, D. Osorio, M. Vorobyev, and T. W. Cronin, "Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra," J. Opt. Soc. Am. A 17, 1713-1721 (2000).
[CrossRef]

D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).

N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
[CrossRef]

1999 (4)

R. G. Bosworth and K. R. Dobkins, "Left hemisphere dominance for motion processing in deaf signers," Psychol. Sci. 10, 256-262 (1999).
[CrossRef]

E. P. Simoncelli and O. Schwartz, "Modeling surround suppression in V1 neurons with a statistically-derived normalization model," Adv. Neural Inf. Process. Syst. 11, 153-159 (1999).

J. Gold, P. J. Bennett, and A. B. Sekuler, "Identification of band-pass filtered letters and faces by human and ideal observers," Vision Res. 39, 3537-3560 (1999).
[CrossRef]

J. Huang and D. Mumford, "Statistics of natural images and models," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE Press, 1999), pp. 541-547.

1998 (6)

D. Brentari, A Prosodic Model of American Sign Language Phonology (MIT, 1998).

A. M. Martinez and R. Benavente, "The AR face database," CVC Tech. Rep. 24 (Computer Vision Center, Universitat Autònama de Barcelona, 1998) Available at http://rvl1.ecn.purdue.edu/~aleix/ar.html.

J. H. van Hateren and A. van der Schaaf, "Independent component filters of natural images compared with simple cells in primary visual cortex," Proc. R. Soc. London, Ser. B 265, 359-366 (1998).
[CrossRef]

K. Emmorey, E. Klima, and G. Hickok, "Mental rotation within linguistic and non-linguistic domains in users of American sign language," Cognition 68, 221-246 (1998).
[CrossRef] [PubMed]

D. M. Coppola, H. R. Purves, A. N. McCoy, and D. Purves, "The distribution of oriented contours in the real world," Proc. Natl. Acad. Sci. U.S.A. 95, 4002-4006 (1998).
[CrossRef] [PubMed]

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998).
[CrossRef]

1997 (3)

M. A. Webster and J. D. Mollon, "Adaptation and the color statistics of natural images," Vision Res. 37, 3283-3298 (1997).
[CrossRef]

A. J. Bell and T. J. Sejnowski, "The 'independent components' of natural scenes are edge filters," Vision Res. 37, 3327-3338 (1997).
[CrossRef]

D. L. Ruderman, "Origins of scaling in natural images," Vision Res. 37, 3385-3398 (1997).
[CrossRef]

1996 (5)

N. P. Costen, D. M. Parker, and I. Craw, "Effects of high-pass and low-pass spatial filtering on face identification," Percept. Psychophys. 58, 602-612 (1996).
[CrossRef] [PubMed]

D. Osorio and M. Vorobyev, "Colour vision as an adaptation to frugivory in primates," Proc. R. Soc. London, Ser. B 263, 593-599 (1996).
[CrossRef]

K. Emmorey and S. M. Kosslyn, "Enhanced image generation abilities in deaf signers: a right hemisphere effect," Brain Cogn. 32, 28-44 (1996).
[CrossRef] [PubMed]

B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature 381, 607-609 (1996).
[CrossRef] [PubMed]

A. van der Schaaf and J. H. van Hateren, "Modelling the power spectra of natural images: statistics and information," Vision Res. 36, 2759-2770 (1996).
[CrossRef] [PubMed]

1994 (6)

Y. Tadmor and D. J. Tolhurst, "Discrimination of changes in the second-order statistics of natural and synthetic images," Vision Res. 34, 541-554 (1994).
[CrossRef] [PubMed]

D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling in the woods," Phys. Rev. Lett. 73, 814-817 (1994).
[CrossRef] [PubMed]

J. A. Solomon and D. G. Pelli, "The visual filter mediating letter identification," Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

D. Field, "What is the goal of sensory coding?" Neural Comput. 6, 559-601 (1994).
[CrossRef]

E. Peli, E. Lee, C. L. Trempe, and S. Buzney, "Image enhancement for the visually impaired: the effects of enhancement on face recognition," J. Opt. Soc. Am. A 11, 1929-1939 (1994).
[CrossRef]

D. L. Ruderman, "The statistics of natural images," Network Comput. Neural Syst. 5, 517-548 (1994).
[CrossRef]

1992 (4)

J. J. Atick, "Could information theory provide an ecological theory for sensory processing?" Network Comput. Neural Syst. 3, 231-251 (1992).
[CrossRef]

D. Perlmutter, "Sonority and syllable structure in American Sign Language," Linguist. Inquiry 23, 407-442 (1992).

D. J. Tolhurst, Y. Tadmor, and T. Chao, "Amplitude spectra of natural images," Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

J. Atick and A. Redlich, "What does the retina know about natural scenes?" Neural Comput. 4, 196-210 (1992).
[CrossRef]

1991 (3)

R. J. Baddeley and P. J. Hancock, "A statistical analysis of natural images matches psychophysically derived orientation tuning curves," Proc. R. Soc. London, Ser. B 246, 219-223 (1991).
[CrossRef]

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).
[CrossRef]

D. H. Parish and G. Sperling, "Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination," Vision Res. 31, 1399-1415 (1991).
[CrossRef] [PubMed]

1990 (1)

1989 (3)

S. Sokol, A. Moskowitz, and V. Hansen, "Evoked potential and preferential looking correlates of the oblique effect in 3-month-old infants," Doc. Ophthalmol. 71, 321-328 (1989).
[CrossRef] [PubMed]

J. N. Lythgoe and J. C. Partridge, "Visual pigments and the acquisition of visual information," J. Exp. Biol. 146, 1-20 (1989).
[PubMed]

J. G. Daugman, "Entropy reduction and decorrelation in visual coding by oriented neural receptive fields," IEEE Trans. Biomed. Eng. 36, 107-114 (1989).
[CrossRef] [PubMed]

1988 (1)

1987 (4)

1986 (1)

T. Hayes, M. C. Morrone, and D. C. Burr, "Recognition of positive and negative bandpass-filtered images," Perception 15, 595-602 (1986).
[CrossRef] [PubMed]

1985 (1)

J. Gwiazda, I. Mohindra, S. Brill, and R. Held, "Infant astigmatism and meridional amblyopia," Vision Res. 25, 1269-1276 (1985).
[CrossRef] [PubMed]

1982 (2)

M. V. Srinivasan, S. B. Laughlin, and A. Dubs, "Predictive coding: a fresh view of inhibition in the retina," Proc. R. Soc. London, Ser. B 216, 427-459 (1982).
[CrossRef]

J. D. Mollon, "Color vision," Annu. Rev. Physiol. 33, 41-85 (1982).

1979 (1)

T. Tieger and L. Ganz, "Recognition of faces in the presence of two-dimensional sinusoidal masks," Percept. Psychophys. 26, 163-167 (1979).
[CrossRef]

1978 (2)

M. P. Stryker, H. Sherk, A. G. Leventhal, and H. V. Hirsch, "Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours," J. Neurophysiol. 41, 896-909 (1978).
[PubMed]

E. Switkes, M. J. Mayer, and J. A. Sloan, "Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis," Vision Res. 18, 1393-1399 (1978).
[CrossRef] [PubMed]

1977 (1)

1974 (1)

D. Y. Teller, R. Morse, R. Borton, and D. Regal, "Visual acuity for vertical and diagonal gratings in human infants," Vision Res. 14, 1433-1439 (1974).
[CrossRef] [PubMed]

1973 (2)

D. E. Mitchell, R. D. Freeman, M. Millodot, and G. Haegerstrom, "Meridional amblyopia: evidence for modification of the human visual system by early visual experience," Vision Res. 13, 535-558 (1973).
[CrossRef] [PubMed]

R. C. Annis and B. Frost, "Human visual ecology and orientation anisotropies in acuity," Science 182, 729-731 (1973).
[CrossRef] [PubMed]

1972 (1)

S. Appelle, "Perception and discrimination as a function of stimulus orientation: the 'oblique effect' in man and animals," Psychol. Bull. 78, 266-278 (1972).
[CrossRef] [PubMed]

1971 (1)

C. Blakemore and G. F. Cooper, "Modification of the visual cortex by experience," Brain Res. 31, 366 (1971).
[CrossRef] [PubMed]

1970 (1)

C. Blakemore and G. F. Cooper, "Development of the brain depends on the visual environment," Nature 228, 477-478 (1970).
[CrossRef] [PubMed]

1967 (1)

1966 (1)

F. W. Campbell, J. J. Kulikowski, and J. Levinson, "The effect of orientation on the visual resolution of gratings," J. Physiol. (London) 187, 427-436 (1966).

Annis, R. C.

R. C. Annis and B. Frost, "Human visual ecology and orientation anisotropies in acuity," Science 182, 729-731 (1973).
[CrossRef] [PubMed]

Appelle, S.

S. Appelle, "Perception and discrimination as a function of stimulus orientation: the 'oblique effect' in man and animals," Psychol. Bull. 78, 266-278 (1972).
[CrossRef] [PubMed]

Atick, J.

J. Atick and A. Redlich, "What does the retina know about natural scenes?" Neural Comput. 4, 196-210 (1992).
[CrossRef]

Atick, J. J.

J. J. Atick, "Could information theory provide an ecological theory for sensory processing?" Network Comput. Neural Syst. 3, 231-251 (1992).
[CrossRef]

Baddeley, R. J.

R. J. Baddeley and P. J. Hancock, "A statistical analysis of natural images matches psychophysically derived orientation tuning curves," Proc. R. Soc. London, Ser. B 246, 219-223 (1991).
[CrossRef]

Balboa, R. M.

R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
[CrossRef] [PubMed]

R. M. Balboa, C. W. Tyler, and N. M. Grzywacz, "Occlusions contribute to scaling in natural images," Vision Res. 41, 955-964 (2001).
[CrossRef] [PubMed]

Bartlett, M. S.

R. G. Bosworth, C. E. Wright, M. S. Bartlett, D. P. Corina, and K. R. Dobkins, "Characterization of the visual properties of spatial frequency and speed in ASL signs," in Cross-Linguistic Perspectives in Sign Language Research. Selected Papers from TISLR 2000, A.E.Baker, B.van den Bogaerde, and O.Crasborn, eds. (Signum, 2003), pp. 265-282.

Bavelier, D.

C. J. Brozinsky and D. Bavelier, "Motion velocity thresholds in deaf signers: changes in lateralization but not in overall sensitivity," Brain Res. Cognit. Brain Res. 21, 1-10 (2004).
[CrossRef]

D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001).
[PubMed]

D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).

Bell, A. J.

A. J. Bell and T. J. Sejnowski, "The 'independent components' of natural scenes are edge filters," Vision Res. 37, 3327-3338 (1997).
[CrossRef]

Benavente, R.

A. M. Martinez and R. Benavente, "The AR face database," CVC Tech. Rep. 24 (Computer Vision Center, Universitat Autònama de Barcelona, 1998) Available at http://rvl1.ecn.purdue.edu/~aleix/ar.html.

Bennett, P. J.

J. Gold, P. J. Bennett, and A. B. Sekuler, "Identification of band-pass filtered letters and faces by human and ideal observers," Vision Res. 39, 3537-3560 (1999).
[CrossRef]

Bialek, W.

D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling in the woods," Phys. Rev. Lett. 73, 814-817 (1994).
[CrossRef] [PubMed]

Blakemore, C.

C. Blakemore and G. F. Cooper, "Modification of the visual cortex by experience," Brain Res. 31, 366 (1971).
[CrossRef] [PubMed]

C. Blakemore and G. F. Cooper, "Development of the brain depends on the visual environment," Nature 228, 477-478 (1970).
[CrossRef] [PubMed]

Borton, R.

D. Y. Teller, R. Morse, R. Borton, and D. Regal, "Visual acuity for vertical and diagonal gratings in human infants," Vision Res. 14, 1433-1439 (1974).
[CrossRef] [PubMed]

Bosworth, R. G.

R. G. Bosworth, C. E. Wright, M. S. Bartlett, D. P. Corina, and K. R. Dobkins, "Characterization of the visual properties of spatial frequency and speed in ASL signs," in Cross-Linguistic Perspectives in Sign Language Research. Selected Papers from TISLR 2000, A.E.Baker, B.van den Bogaerde, and O.Crasborn, eds. (Signum, 2003), pp. 265-282.

R. G. Bosworth and K. R. Dobkins, "Visual field asymmetries for motion processing in deaf and hearing signers," Brain Cogn 49, 170-181 (2002).
[CrossRef] [PubMed]

R. G. Bosworth and K. R. Dobkins, "Left hemisphere dominance for motion processing in deaf signers," Psychol. Sci. 10, 256-262 (1999).
[CrossRef]

Brady, N.

N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
[CrossRef]

Brentari, D.

D. Brentari, A Prosodic Model of American Sign Language Phonology (MIT, 1998).

P. Eccarius and D. Brentari, "Symmetry and dominance: a cross-linguistic study of signs and classifier constructions," Lingua (to be published); www.sciencedirect.com.

Brill, S.

J. Gwiazda, I. Mohindra, S. Brill, and R. Held, "Infant astigmatism and meridional amblyopia," Vision Res. 25, 1269-1276 (1985).
[CrossRef] [PubMed]

Brozinsky, C.

D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001).
[PubMed]

Brozinsky, C. J.

C. J. Brozinsky and D. Bavelier, "Motion velocity thresholds in deaf signers: changes in lateralization but not in overall sensitivity," Brain Res. Cognit. Brain Res. 21, 1-10 (2004).
[CrossRef]

Burr, D. C.

T. Hayes, M. C. Morrone, and D. C. Burr, "Recognition of positive and negative bandpass-filtered images," Perception 15, 595-602 (1986).
[CrossRef] [PubMed]

Burton, G. J.

Buzney, S.

Campbell, F. W.

F. W. Campbell, J. J. Kulikowski, and J. Levinson, "The effect of orientation on the visual resolution of gratings," J. Physiol. (London) 187, 427-436 (1966).

Chao, T.

D. J. Tolhurst, Y. Tadmor, and T. Chao, "Amplitude spectra of natural images," Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

Charles-Dominique, P.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998).
[CrossRef]

Chiao, C. C.

Chirimuuta, M.

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

Chung, S. T.

S. T. Chung, "The effect of letter spacing on reading speed in central and peripheral vision," Invest. Ophthalmol. Visual Sci. 43, 1270-1276 (2002).

Clatworthy, P. L.

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

Cooper, G. F.

C. Blakemore and G. F. Cooper, "Modification of the visual cortex by experience," Brain Res. 31, 366 (1971).
[CrossRef] [PubMed]

C. Blakemore and G. F. Cooper, "Development of the brain depends on the visual environment," Nature 228, 477-478 (1970).
[CrossRef] [PubMed]

Coppola, D. M.

D. M. Coppola, H. R. Purves, A. N. McCoy, and D. Purves, "The distribution of oriented contours in the real world," Proc. Natl. Acad. Sci. U.S.A. 95, 4002-4006 (1998).
[CrossRef] [PubMed]

Corina, D.

D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).

Corina, D. P.

R. G. Bosworth, C. E. Wright, M. S. Bartlett, D. P. Corina, and K. R. Dobkins, "Characterization of the visual properties of spatial frequency and speed in ASL signs," in Cross-Linguistic Perspectives in Sign Language Research. Selected Papers from TISLR 2000, A.E.Baker, B.van den Bogaerde, and O.Crasborn, eds. (Signum, 2003), pp. 265-282.

Costen, N. P.

N. P. Costen, D. M. Parker, and I. Craw, "Effects of high-pass and low-pass spatial filtering on face identification," Percept. Psychophys. 58, 602-612 (1996).
[CrossRef] [PubMed]

Cover, T. M.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).
[CrossRef]

Craw, I.

N. P. Costen, D. M. Parker, and I. Craw, "Effects of high-pass and low-pass spatial filtering on face identification," Percept. Psychophys. 58, 602-612 (1996).
[CrossRef] [PubMed]

Cristobal, G.

Cronin, T. W.

Daugman, J. G.

J. G. Daugman, "Entropy reduction and decorrelation in visual coding by oriented neural receptive fields," IEEE Trans. Biomed. Eng. 36, 107-114 (1989).
[CrossRef] [PubMed]

DeFord, J. K.

E. A. Essock, J. K. DeFord, B. C. Hansen, and M. J. Sinai, "Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect," Vision Res. 43, 1329-1335 (2003).
[CrossRef] [PubMed]

Dobkins, K. R.

R. G. Bosworth, C. E. Wright, M. S. Bartlett, D. P. Corina, and K. R. Dobkins, "Characterization of the visual properties of spatial frequency and speed in ASL signs," in Cross-Linguistic Perspectives in Sign Language Research. Selected Papers from TISLR 2000, A.E.Baker, B.van den Bogaerde, and O.Crasborn, eds. (Signum, 2003), pp. 265-282.

R. G. Bosworth and K. R. Dobkins, "Visual field asymmetries for motion processing in deaf and hearing signers," Brain Cogn 49, 170-181 (2002).
[CrossRef] [PubMed]

E. M. Finney and K. R. Dobkins, "Visual contrast sensitivity in deaf versus hearing populations: exploring the perceptual consequences of auditory deprivation and experience with a visual language," Brain Res. Cognit. Brain Res. 11, 171-183 (2001).
[CrossRef]

R. G. Bosworth and K. R. Dobkins, "Left hemisphere dominance for motion processing in deaf signers," Psychol. Sci. 10, 256-262 (1999).
[CrossRef]

Dubs, A.

M. V. Srinivasan, S. B. Laughlin, and A. Dubs, "Predictive coding: a fresh view of inhibition in the retina," Proc. R. Soc. London, Ser. B 216, 427-459 (1982).
[CrossRef]

Eccarius, P.

P. Eccarius and D. Brentari, "Symmetry and dominance: a cross-linguistic study of signs and classifier constructions," Lingua (to be published); www.sciencedirect.com.

Emmorey, K.

K. Emmorey, E. Klima, and G. Hickok, "Mental rotation within linguistic and non-linguistic domains in users of American sign language," Cognition 68, 221-246 (1998).
[CrossRef] [PubMed]

K. Emmorey and S. M. Kosslyn, "Enhanced image generation abilities in deaf signers: a right hemisphere effect," Brain Cogn. 32, 28-44 (1996).
[CrossRef] [PubMed]

Essock, E. A.

B. C. Hansen and E. A. Essock, "A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes," J. Vision 4, 1044-1060 (2004).
[CrossRef]

E. A. Essock, J. K. DeFord, B. C. Hansen, and M. J. Sinai, "Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect," Vision Res. 43, 1329-1335 (2003).
[CrossRef] [PubMed]

Field, D.

Field, D. J.

N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
[CrossRef]

B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature 381, 607-609 (1996).
[CrossRef] [PubMed]

D. J. Field, "Relations between the statistics of natural images and the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379-2394 (1987).
[CrossRef] [PubMed]

Finney, E. M.

E. M. Finney and K. R. Dobkins, "Visual contrast sensitivity in deaf versus hearing populations: exploring the perceptual consequences of auditory deprivation and experience with a visual language," Brain Res. Cognit. Brain Res. 11, 171-183 (2001).
[CrossRef]

Freeman, R. D.

D. E. Mitchell, R. D. Freeman, M. Millodot, and G. Haegerstrom, "Meridional amblyopia: evidence for modification of the human visual system by early visual experience," Vision Res. 13, 535-558 (1973).
[CrossRef] [PubMed]

D. E. Mitchell, R. D. Freeman, and G. Westheimer, "Effect of orientation on the modulation sensitivity for interference fringes on the retina," J. Opt. Soc. Am. 57, 246-249 (1967).
[CrossRef] [PubMed]

Frost, B.

R. C. Annis and B. Frost, "Human visual ecology and orientation anisotropies in acuity," Science 182, 729-731 (1973).
[CrossRef] [PubMed]

Gallogly, D. P.

W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly, "Edge co-occurrence in natural images predicts contour grouping performance," Vision Res. 41, 711-724 (2001).
[CrossRef] [PubMed]

Ganz, L.

T. Tieger and L. Ganz, "Recognition of faces in the presence of two-dimensional sinusoidal masks," Percept. Psychophys. 26, 163-167 (1979).
[CrossRef]

Geisler, W. S.

W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly, "Edge co-occurrence in natural images predicts contour grouping performance," Vision Res. 41, 711-724 (2001).
[CrossRef] [PubMed]

Gold, J.

J. Gold, P. J. Bennett, and A. B. Sekuler, "Identification of band-pass filtered letters and faces by human and ideal observers," Vision Res. 39, 3537-3560 (1999).
[CrossRef]

Grzywacz, N. M.

R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
[CrossRef] [PubMed]

R. M. Balboa, C. W. Tyler, and N. M. Grzywacz, "Occlusions contribute to scaling in natural images," Vision Res. 41, 955-964 (2001).
[CrossRef] [PubMed]

Gwiazda, J.

J. Gwiazda, I. Mohindra, S. Brill, and R. Held, "Infant astigmatism and meridional amblyopia," Vision Res. 25, 1269-1276 (1985).
[CrossRef] [PubMed]

Haegerstrom, G.

D. E. Mitchell, R. D. Freeman, M. Millodot, and G. Haegerstrom, "Meridional amblyopia: evidence for modification of the human visual system by early visual experience," Vision Res. 13, 535-558 (1973).
[CrossRef] [PubMed]

Hancock, P. J.

R. J. Baddeley and P. J. Hancock, "A statistical analysis of natural images matches psychophysically derived orientation tuning curves," Proc. R. Soc. London, Ser. B 246, 219-223 (1991).
[CrossRef]

Hansen, B. C.

B. C. Hansen and E. A. Essock, "A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes," J. Vision 4, 1044-1060 (2004).
[CrossRef]

E. A. Essock, J. K. DeFord, B. C. Hansen, and M. J. Sinai, "Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect," Vision Res. 43, 1329-1335 (2003).
[CrossRef] [PubMed]

Hansen, V.

S. Sokol, A. Moskowitz, and V. Hansen, "Evoked potential and preferential looking correlates of the oblique effect in 3-month-old infants," Doc. Ophthalmol. 71, 321-328 (1989).
[CrossRef] [PubMed]

S. Sokol, A. Moskowitz, and V. Hansen, "Electrophysiological evidence for the oblique effect in human infants," Invest. Ophthalmol. Visual Sci. 28, 731-735 (1987).

Hayes, T.

T. Hayes, M. C. Morrone, and D. C. Burr, "Recognition of positive and negative bandpass-filtered images," Perception 15, 595-602 (1986).
[CrossRef] [PubMed]

Held, R.

J. Gwiazda, I. Mohindra, S. Brill, and R. Held, "Infant astigmatism and meridional amblyopia," Vision Res. 25, 1269-1276 (1985).
[CrossRef] [PubMed]

Hickok, G.

K. Emmorey, E. Klima, and G. Hickok, "Mental rotation within linguistic and non-linguistic domains in users of American sign language," Cognition 68, 221-246 (1998).
[CrossRef] [PubMed]

Hirsch, H. V.

M. P. Stryker, H. Sherk, A. G. Leventhal, and H. V. Hirsch, "Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours," J. Neurophysiol. 41, 896-909 (1978).
[PubMed]

Huang, J.

J. Huang and D. Mumford, "Statistics of natural images and models," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE Press, 1999), pp. 541-547.

Hutton, C.

D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).

Julliot, C.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998).
[CrossRef]

Keil, M. S.

Kersten, D.

Klima, E.

K. Emmorey, E. Klima, and G. Hickok, "Mental rotation within linguistic and non-linguistic domains in users of American sign language," Cognition 68, 221-246 (1998).
[CrossRef] [PubMed]

Knill, D. C.

Kosslyn, S. M.

K. Emmorey and S. M. Kosslyn, "Enhanced image generation abilities in deaf signers: a right hemisphere effect," Brain Cogn. 32, 28-44 (1996).
[CrossRef] [PubMed]

Kulikowski, J. J.

F. W. Campbell, J. J. Kulikowski, and J. Levinson, "The effect of orientation on the visual resolution of gratings," J. Physiol. (London) 187, 427-436 (1966).

Kurshan, P.

N. J. Majaj, D. G. Pelli, P. Kurshan, and M. Palomares, "The role of spatial frequency channels in letter identification," Vision Res. 42, 1165-1184 (2002).
[CrossRef] [PubMed]

Laughlin, S. B.

M. V. Srinivasan, S. B. Laughlin, and A. Dubs, "Predictive coding: a fresh view of inhibition in the retina," Proc. R. Soc. London, Ser. B 216, 427-459 (1982).
[CrossRef]

Lauritzen, J. S.

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

Lee, E.

Leventhal, A. G.

M. P. Stryker, H. Sherk, A. G. Leventhal, and H. V. Hirsch, "Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours," J. Neurophysiol. 41, 896-909 (1978).
[PubMed]

Levinson, J.

F. W. Campbell, J. J. Kulikowski, and J. Levinson, "The effect of orientation on the visual resolution of gratings," J. Physiol. (London) 187, 427-436 (1966).

Lewicki, M. S.

M. S. Lewicki, "Efficient coding of natural sounds," Nat. Neurosci. 5, 356-363 (2002).
[CrossRef] [PubMed]

Liu, G.

D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001).
[PubMed]

D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).

Lythgoe, J. N.

J. N. Lythgoe and J. C. Partridge, "Visual pigments and the acquisition of visual information," J. Exp. Biol. 146, 1-20 (1989).
[PubMed]

Majaj, N. J.

N. J. Majaj, D. G. Pelli, P. Kurshan, and M. Palomares, "The role of spatial frequency channels in letter identification," Vision Res. 42, 1165-1184 (2002).
[CrossRef] [PubMed]

Martinez, A. M.

R. B. Wilbur and A. M. Martinez, "Physical correlates of prosodic structure in American Sign Language," presented at the Meeting of the Chicago Linguistics Society, April 25-27, 2002.

A. M. Martinez and R. Benavente, "The AR face database," CVC Tech. Rep. 24 (Computer Vision Center, Universitat Autònama de Barcelona, 1998) Available at http://rvl1.ecn.purdue.edu/~aleix/ar.html.

Mayer, M. J.

E. Switkes, M. J. Mayer, and J. A. Sloan, "Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis," Vision Res. 18, 1393-1399 (1978).
[CrossRef] [PubMed]

McCoy, A. N.

D. M. Coppola, H. R. Purves, A. N. McCoy, and D. Purves, "The distribution of oriented contours in the real world," Proc. Natl. Acad. Sci. U.S.A. 95, 4002-4006 (1998).
[CrossRef] [PubMed]

Millodot, M.

D. E. Mitchell, R. D. Freeman, M. Millodot, and G. Haegerstrom, "Meridional amblyopia: evidence for modification of the human visual system by early visual experience," Vision Res. 13, 535-558 (1973).
[CrossRef] [PubMed]

Mitchell, D. E.

D. E. Mitchell, R. D. Freeman, M. Millodot, and G. Haegerstrom, "Meridional amblyopia: evidence for modification of the human visual system by early visual experience," Vision Res. 13, 535-558 (1973).
[CrossRef] [PubMed]

D. E. Mitchell, R. D. Freeman, and G. Westheimer, "Effect of orientation on the modulation sensitivity for interference fringes on the retina," J. Opt. Soc. Am. 57, 246-249 (1967).
[CrossRef] [PubMed]

Mitchell, T.

D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001).
[PubMed]

D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).

Mohindra, I.

J. Gwiazda, I. Mohindra, S. Brill, and R. Held, "Infant astigmatism and meridional amblyopia," Vision Res. 25, 1269-1276 (1985).
[CrossRef] [PubMed]

Mollon, J. D.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998).
[CrossRef]

M. A. Webster and J. D. Mollon, "Adaptation and the color statistics of natural images," Vision Res. 37, 3283-3298 (1997).
[CrossRef]

J. D. Mollon, "Color vision," Annu. Rev. Physiol. 33, 41-85 (1982).

Moorhead, I. R.

Morrone, M. C.

T. Hayes, M. C. Morrone, and D. C. Burr, "Recognition of positive and negative bandpass-filtered images," Perception 15, 595-602 (1986).
[CrossRef] [PubMed]

Morse, R.

D. Y. Teller, R. Morse, R. Borton, and D. Regal, "Visual acuity for vertical and diagonal gratings in human infants," Vision Res. 14, 1433-1439 (1974).
[CrossRef] [PubMed]

Moskowitz, A.

S. Sokol, A. Moskowitz, and V. Hansen, "Evoked potential and preferential looking correlates of the oblique effect in 3-month-old infants," Doc. Ophthalmol. 71, 321-328 (1989).
[CrossRef] [PubMed]

S. Sokol, A. Moskowitz, and V. Hansen, "Electrophysiological evidence for the oblique effect in human infants," Invest. Ophthalmol. Visual Sci. 28, 731-735 (1987).

Mumford, D.

J. Huang and D. Mumford, "Statistics of natural images and models," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE Press, 1999), pp. 541-547.

Neville, H.

D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001).
[PubMed]

D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).

Oliva, A.

A. Torralba and A. Oliva, "Statistics of natural image categories," Network 14, 391-412 (2003).
[CrossRef] [PubMed]

Olshausen, B. A.

E. P. Simoncelli and B. A. Olshausen, "Natural image statistics and neural representation," Annu. Rev. Neurosci. 24, 1193-1216 (2001).
[CrossRef] [PubMed]

B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature 381, 607-609 (1996).
[CrossRef] [PubMed]

Osorio, D.

Palomares, M.

N. J. Majaj, D. G. Pelli, P. Kurshan, and M. Palomares, "The role of spatial frequency channels in letter identification," Vision Res. 42, 1165-1184 (2002).
[CrossRef] [PubMed]

Parish, D. H.

D. H. Parish and G. Sperling, "Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination," Vision Res. 31, 1399-1415 (1991).
[CrossRef] [PubMed]

Parker, D. M.

N. P. Costen, D. M. Parker, and I. Craw, "Effects of high-pass and low-pass spatial filtering on face identification," Percept. Psychophys. 58, 602-612 (1996).
[CrossRef] [PubMed]

Parraga, C. A.

C. A. Parraga, T. Troscianko, and D. J. Tolhurst, "The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model," Vision Res. 45, 3145-3168 (2005).
[CrossRef] [PubMed]

Partridge, J. C.

J. N. Lythgoe and J. C. Partridge, "Visual pigments and the acquisition of visual information," J. Exp. Biol. 146, 1-20 (1989).
[PubMed]

Peli, E.

Pelli, D. G.

N. J. Majaj, D. G. Pelli, P. Kurshan, and M. Palomares, "The role of spatial frequency channels in letter identification," Vision Res. 42, 1165-1184 (2002).
[CrossRef] [PubMed]

J. A. Solomon and D. G. Pelli, "The visual filter mediating letter identification," Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

Perlmutter, D.

D. Perlmutter, "Sonority and syllable structure in American Sign Language," Linguist. Inquiry 23, 407-442 (1992).

Perry, J. S.

W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly, "Edge co-occurrence in natural images predicts contour grouping performance," Vision Res. 41, 711-724 (2001).
[CrossRef] [PubMed]

Poder, E.

E. Poder, "Spatial-frequency spectra of printed characters and human visual perception," Vision Res. 43, 1507-1511 (2003).
[CrossRef] [PubMed]

Pokorny, J.

Purves, D.

D. M. Coppola, H. R. Purves, A. N. McCoy, and D. Purves, "The distribution of oriented contours in the real world," Proc. Natl. Acad. Sci. U.S.A. 95, 4002-4006 (1998).
[CrossRef] [PubMed]

Purves, H. R.

D. M. Coppola, H. R. Purves, A. N. McCoy, and D. Purves, "The distribution of oriented contours in the real world," Proc. Natl. Acad. Sci. U.S.A. 95, 4002-4006 (1998).
[CrossRef] [PubMed]

Redlich, A.

J. Atick and A. Redlich, "What does the retina know about natural scenes?" Neural Comput. 4, 196-210 (1992).
[CrossRef]

Regal, D.

D. Y. Teller, R. Morse, R. Borton, and D. Regal, "Visual acuity for vertical and diagonal gratings in human infants," Vision Res. 14, 1433-1439 (1974).
[CrossRef] [PubMed]

Regan, B. C.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998).
[CrossRef]

Riedl, T. R.

Ruderman, D. L.

D. L. Ruderman, "Origins of scaling in natural images," Vision Res. 37, 3385-3398 (1997).
[CrossRef]

D. L. Ruderman, "The statistics of natural images," Network Comput. Neural Syst. 5, 517-548 (1994).
[CrossRef]

D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling in the woods," Phys. Rev. Lett. 73, 814-817 (1994).
[CrossRef] [PubMed]

Schwartz, O.

E. P. Simoncelli and O. Schwartz, "Modeling surround suppression in V1 neurons with a statistically-derived normalization model," Adv. Neural Inf. Process. Syst. 11, 153-159 (1999).

Sejnowski, T. J.

A. J. Bell and T. J. Sejnowski, "The 'independent components' of natural scenes are edge filters," Vision Res. 37, 3327-3338 (1997).
[CrossRef]

Sekuler, A. B.

J. Gold, P. J. Bennett, and A. B. Sekuler, "Identification of band-pass filtered letters and faces by human and ideal observers," Vision Res. 39, 3537-3560 (1999).
[CrossRef]

Sherk, H.

M. P. Stryker, H. Sherk, A. G. Leventhal, and H. V. Hirsch, "Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours," J. Neurophysiol. 41, 896-909 (1978).
[PubMed]

Simmen, B.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998).
[CrossRef]

Simoncelli, E. P.

E. P. Simoncelli and B. A. Olshausen, "Natural image statistics and neural representation," Annu. Rev. Neurosci. 24, 1193-1216 (2001).
[CrossRef] [PubMed]

E. P. Simoncelli and O. Schwartz, "Modeling surround suppression in V1 neurons with a statistically-derived normalization model," Adv. Neural Inf. Process. Syst. 11, 153-159 (1999).

Sinai, M. J.

E. A. Essock, J. K. DeFord, B. C. Hansen, and M. J. Sinai, "Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect," Vision Res. 43, 1329-1335 (2003).
[CrossRef] [PubMed]

Sloan, J. A.

E. Switkes, M. J. Mayer, and J. A. Sloan, "Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis," Vision Res. 18, 1393-1399 (1978).
[CrossRef] [PubMed]

Smith, V. C.

Sokol, S.

S. Sokol, A. Moskowitz, and V. Hansen, "Evoked potential and preferential looking correlates of the oblique effect in 3-month-old infants," Doc. Ophthalmol. 71, 321-328 (1989).
[CrossRef] [PubMed]

S. Sokol, A. Moskowitz, and V. Hansen, "Electrophysiological evidence for the oblique effect in human infants," Invest. Ophthalmol. Visual Sci. 28, 731-735 (1987).

Solomon, J. A.

J. A. Solomon and D. G. Pelli, "The visual filter mediating letter identification," Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

Sperling, G.

D. H. Parish and G. Sperling, "Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination," Vision Res. 31, 1399-1415 (1991).
[CrossRef] [PubMed]

T. R. Riedl and G. Sperling, "Spatial-frequency bands in complex visual stimuli: American Sign Language," J. Opt. Soc. Am. A 5, 606-616 (1988).
[CrossRef] [PubMed]

Srinivasan, M. V.

M. V. Srinivasan, S. B. Laughlin, and A. Dubs, "Predictive coding: a fresh view of inhibition in the retina," Proc. R. Soc. London, Ser. B 216, 427-459 (1982).
[CrossRef]

Stryker, M. P.

M. P. Stryker, H. Sherk, A. G. Leventhal, and H. V. Hirsch, "Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours," J. Neurophysiol. 41, 896-909 (1978).
[PubMed]

Super, B. J.

W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly, "Edge co-occurrence in natural images predicts contour grouping performance," Vision Res. 41, 711-724 (2001).
[CrossRef] [PubMed]

Switkes, E.

E. Switkes, M. J. Mayer, and J. A. Sloan, "Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis," Vision Res. 18, 1393-1399 (1978).
[CrossRef] [PubMed]

Tadmor, Y.

Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
[CrossRef] [PubMed]

D. J. Tolhurst and Y. Tadmor, "Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural images," Perception 29, 1087-1100 (2000).
[CrossRef]

Y. Tadmor and D. J. Tolhurst, "Discrimination of changes in the second-order statistics of natural and synthetic images," Vision Res. 34, 541-554 (1994).
[CrossRef] [PubMed]

D. J. Tolhurst, Y. Tadmor, and T. Chao, "Amplitude spectra of natural images," Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

Teller, D. Y.

D. Y. Teller, R. Morse, R. Borton, and D. Regal, "Visual acuity for vertical and diagonal gratings in human infants," Vision Res. 14, 1433-1439 (1974).
[CrossRef] [PubMed]

Thomas, J. A.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).
[CrossRef]

Thomson, M. G.

M. G. Thomson, "Beats, kurtosis and visual coding," Network 12, 271-287 (2001).
[PubMed]

Tieger, T.

T. Tieger and L. Ganz, "Recognition of faces in the presence of two-dimensional sinusoidal masks," Percept. Psychophys. 26, 163-167 (1979).
[CrossRef]

Tolhurst, D. J.

C. A. Parraga, T. Troscianko, and D. J. Tolhurst, "The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model," Vision Res. 45, 3145-3168 (2005).
[CrossRef] [PubMed]

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
[CrossRef] [PubMed]

D. J. Tolhurst and Y. Tadmor, "Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural images," Perception 29, 1087-1100 (2000).
[CrossRef]

Y. Tadmor and D. J. Tolhurst, "Discrimination of changes in the second-order statistics of natural and synthetic images," Vision Res. 34, 541-554 (1994).
[CrossRef] [PubMed]

D. J. Tolhurst, Y. Tadmor, and T. Chao, "Amplitude spectra of natural images," Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

Tomann, A.

D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001).
[PubMed]

D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).

Torralba, A.

A. Torralba and A. Oliva, "Statistics of natural image categories," Network 14, 391-412 (2003).
[CrossRef] [PubMed]

Trempe, C. L.

Troscianko, T.

C. A. Parraga, T. Troscianko, and D. J. Tolhurst, "The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model," Vision Res. 45, 3145-3168 (2005).
[CrossRef] [PubMed]

Tyler, C. W.

R. M. Balboa, C. W. Tyler, and N. M. Grzywacz, "Occlusions contribute to scaling in natural images," Vision Res. 41, 955-964 (2001).
[CrossRef] [PubMed]

van der Schaaf, A.

J. H. van Hateren and A. van der Schaaf, "Independent component filters of natural images compared with simple cells in primary visual cortex," Proc. R. Soc. London, Ser. B 265, 359-366 (1998).
[CrossRef]

A. van der Schaaf and J. H. van Hateren, "Modelling the power spectra of natural images: statistics and information," Vision Res. 36, 2759-2770 (1996).
[CrossRef] [PubMed]

van Hateren, J. H.

J. H. van Hateren and A. van der Schaaf, "Independent component filters of natural images compared with simple cells in primary visual cortex," Proc. R. Soc. London, Ser. B 265, 359-366 (1998).
[CrossRef]

A. van der Schaaf and J. H. van Hateren, "Modelling the power spectra of natural images: statistics and information," Vision Res. 36, 2759-2770 (1996).
[CrossRef] [PubMed]

Vienot, F.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998).
[CrossRef]

Vorobyev, M.

Webster, M. A.

M. A. Webster, "Pattern selective adaptation in color and form perception," in The Visual Neurosciences, M.L.Chalupa and S.J.Werner, eds. (MIT, 2003), pp. 936-947.

M. A. Webster and J. D. Mollon, "Adaptation and the color statistics of natural images," Vision Res. 37, 3283-3298 (1997).
[CrossRef]

Westheimer, G.

Wilbur, R. B.

R. B. Wilbur and A. M. Martinez, "Physical correlates of prosodic structure in American Sign Language," presented at the Meeting of the Chicago Linguistics Society, April 25-27, 2002.

Wright, C. E.

R. G. Bosworth, C. E. Wright, M. S. Bartlett, D. P. Corina, and K. R. Dobkins, "Characterization of the visual properties of spatial frequency and speed in ASL signs," in Cross-Linguistic Perspectives in Sign Language Research. Selected Papers from TISLR 2000, A.E.Baker, B.van den Bogaerde, and O.Crasborn, eds. (Signum, 2003), pp. 265-282.

Yendrikhovskij, N.

N. Yendrikhovskij, "Computing color categories from statistics of natural images," J. Imaging Sci. Technol. 45, 409-417 (2001).

Adv. Neural Inf. Process. Syst. (1)

E. P. Simoncelli and O. Schwartz, "Modeling surround suppression in V1 neurons with a statistically-derived normalization model," Adv. Neural Inf. Process. Syst. 11, 153-159 (1999).

Annu. Rev. Neurosci. (1)

E. P. Simoncelli and B. A. Olshausen, "Natural image statistics and neural representation," Annu. Rev. Neurosci. 24, 1193-1216 (2001).
[CrossRef] [PubMed]

Annu. Rev. Physiol. (1)

J. D. Mollon, "Color vision," Annu. Rev. Physiol. 33, 41-85 (1982).

Appl. Opt. (1)

Brain Cogn (1)

R. G. Bosworth and K. R. Dobkins, "Visual field asymmetries for motion processing in deaf and hearing signers," Brain Cogn 49, 170-181 (2002).
[CrossRef] [PubMed]

Brain Cogn. (1)

K. Emmorey and S. M. Kosslyn, "Enhanced image generation abilities in deaf signers: a right hemisphere effect," Brain Cogn. 32, 28-44 (1996).
[CrossRef] [PubMed]

Brain Res. (1)

C. Blakemore and G. F. Cooper, "Modification of the visual cortex by experience," Brain Res. 31, 366 (1971).
[CrossRef] [PubMed]

Brain Res. Cognit. Brain Res. (2)

C. J. Brozinsky and D. Bavelier, "Motion velocity thresholds in deaf signers: changes in lateralization but not in overall sensitivity," Brain Res. Cognit. Brain Res. 21, 1-10 (2004).
[CrossRef]

E. M. Finney and K. R. Dobkins, "Visual contrast sensitivity in deaf versus hearing populations: exploring the perceptual consequences of auditory deprivation and experience with a visual language," Brain Res. Cognit. Brain Res. 11, 171-183 (2001).
[CrossRef]

Cognition (1)

K. Emmorey, E. Klima, and G. Hickok, "Mental rotation within linguistic and non-linguistic domains in users of American sign language," Cognition 68, 221-246 (1998).
[CrossRef] [PubMed]

Doc. Ophthalmol. (1)

S. Sokol, A. Moskowitz, and V. Hansen, "Evoked potential and preferential looking correlates of the oblique effect in 3-month-old infants," Doc. Ophthalmol. 71, 321-328 (1989).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. G. Daugman, "Entropy reduction and decorrelation in visual coding by oriented neural receptive fields," IEEE Trans. Biomed. Eng. 36, 107-114 (1989).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (2)

S. T. Chung, "The effect of letter spacing on reading speed in central and peripheral vision," Invest. Ophthalmol. Visual Sci. 43, 1270-1276 (2002).

S. Sokol, A. Moskowitz, and V. Hansen, "Electrophysiological evidence for the oblique effect in human infants," Invest. Ophthalmol. Visual Sci. 28, 731-735 (1987).

J. Exp. Biol. (1)

J. N. Lythgoe and J. C. Partridge, "Visual pigments and the acquisition of visual information," J. Exp. Biol. 146, 1-20 (1989).
[PubMed]

J. Imaging Sci. Technol. (1)

N. Yendrikhovskij, "Computing color categories from statistics of natural images," J. Imaging Sci. Technol. 45, 409-417 (2001).

J. Neurophysiol. (1)

M. P. Stryker, H. Sherk, A. G. Leventhal, and H. V. Hirsch, "Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours," J. Neurophysiol. 41, 896-909 (1978).
[PubMed]

J. Neurosci. (2)

D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001).
[PubMed]

D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (7)

J. Physiol. (London) (1)

F. W. Campbell, J. J. Kulikowski, and J. Levinson, "The effect of orientation on the visual resolution of gratings," J. Physiol. (London) 187, 427-436 (1966).

J. Vision (1)

B. C. Hansen and E. A. Essock, "A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes," J. Vision 4, 1044-1060 (2004).
[CrossRef]

Linguist. Inquiry (1)

D. Perlmutter, "Sonority and syllable structure in American Sign Language," Linguist. Inquiry 23, 407-442 (1992).

Nat. Neurosci. (1)

M. S. Lewicki, "Efficient coding of natural sounds," Nat. Neurosci. 5, 356-363 (2002).
[CrossRef] [PubMed]

Nature (3)

J. A. Solomon and D. G. Pelli, "The visual filter mediating letter identification," Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

C. Blakemore and G. F. Cooper, "Development of the brain depends on the visual environment," Nature 228, 477-478 (1970).
[CrossRef] [PubMed]

B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature 381, 607-609 (1996).
[CrossRef] [PubMed]

Network (2)

A. Torralba and A. Oliva, "Statistics of natural image categories," Network 14, 391-412 (2003).
[CrossRef] [PubMed]

M. G. Thomson, "Beats, kurtosis and visual coding," Network 12, 271-287 (2001).
[PubMed]

Network Comput. Neural Syst. (2)

D. L. Ruderman, "The statistics of natural images," Network Comput. Neural Syst. 5, 517-548 (1994).
[CrossRef]

J. J. Atick, "Could information theory provide an ecological theory for sensory processing?" Network Comput. Neural Syst. 3, 231-251 (1992).
[CrossRef]

Neural Comput. (2)

D. Field, "What is the goal of sensory coding?" Neural Comput. 6, 559-601 (1994).
[CrossRef]

J. Atick and A. Redlich, "What does the retina know about natural scenes?" Neural Comput. 4, 196-210 (1992).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

D. J. Tolhurst, Y. Tadmor, and T. Chao, "Amplitude spectra of natural images," Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

Percept. Psychophys. (2)

T. Tieger and L. Ganz, "Recognition of faces in the presence of two-dimensional sinusoidal masks," Percept. Psychophys. 26, 163-167 (1979).
[CrossRef]

N. P. Costen, D. M. Parker, and I. Craw, "Effects of high-pass and low-pass spatial filtering on face identification," Percept. Psychophys. 58, 602-612 (1996).
[CrossRef] [PubMed]

Perception (3)

T. Hayes, M. C. Morrone, and D. C. Burr, "Recognition of positive and negative bandpass-filtered images," Perception 15, 595-602 (1986).
[CrossRef] [PubMed]

D. J. Tolhurst and Y. Tadmor, "Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural images," Perception 29, 1087-1100 (2000).
[CrossRef]

N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling in the woods," Phys. Rev. Lett. 73, 814-817 (1994).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. M. Coppola, H. R. Purves, A. N. McCoy, and D. Purves, "The distribution of oriented contours in the real world," Proc. Natl. Acad. Sci. U.S.A. 95, 4002-4006 (1998).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (4)

M. V. Srinivasan, S. B. Laughlin, and A. Dubs, "Predictive coding: a fresh view of inhibition in the retina," Proc. R. Soc. London, Ser. B 216, 427-459 (1982).
[CrossRef]

R. J. Baddeley and P. J. Hancock, "A statistical analysis of natural images matches psychophysically derived orientation tuning curves," Proc. R. Soc. London, Ser. B 246, 219-223 (1991).
[CrossRef]

J. H. van Hateren and A. van der Schaaf, "Independent component filters of natural images compared with simple cells in primary visual cortex," Proc. R. Soc. London, Ser. B 265, 359-366 (1998).
[CrossRef]

D. Osorio and M. Vorobyev, "Colour vision as an adaptation to frugivory in primates," Proc. R. Soc. London, Ser. B 263, 593-599 (1996).
[CrossRef]

Psychol. Bull. (1)

S. Appelle, "Perception and discrimination as a function of stimulus orientation: the 'oblique effect' in man and animals," Psychol. Bull. 78, 266-278 (1972).
[CrossRef] [PubMed]

Psychol. Sci. (1)

R. G. Bosworth and K. R. Dobkins, "Left hemisphere dominance for motion processing in deaf signers," Psychol. Sci. 10, 256-262 (1999).
[CrossRef]

Science (1)

R. C. Annis and B. Frost, "Human visual ecology and orientation anisotropies in acuity," Science 182, 729-731 (1973).
[CrossRef] [PubMed]

Vision Res. (21)

R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
[CrossRef] [PubMed]

D. Y. Teller, R. Morse, R. Borton, and D. Regal, "Visual acuity for vertical and diagonal gratings in human infants," Vision Res. 14, 1433-1439 (1974).
[CrossRef] [PubMed]

J. Gwiazda, I. Mohindra, S. Brill, and R. Held, "Infant astigmatism and meridional amblyopia," Vision Res. 25, 1269-1276 (1985).
[CrossRef] [PubMed]

D. E. Mitchell, R. D. Freeman, M. Millodot, and G. Haegerstrom, "Meridional amblyopia: evidence for modification of the human visual system by early visual experience," Vision Res. 13, 535-558 (1973).
[CrossRef] [PubMed]

W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly, "Edge co-occurrence in natural images predicts contour grouping performance," Vision Res. 41, 711-724 (2001).
[CrossRef] [PubMed]

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998).
[CrossRef]

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
[CrossRef] [PubMed]

C. A. Parraga, T. Troscianko, and D. J. Tolhurst, "The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model," Vision Res. 45, 3145-3168 (2005).
[CrossRef] [PubMed]

Y. Tadmor and D. J. Tolhurst, "Discrimination of changes in the second-order statistics of natural and synthetic images," Vision Res. 34, 541-554 (1994).
[CrossRef] [PubMed]

E. Switkes, M. J. Mayer, and J. A. Sloan, "Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis," Vision Res. 18, 1393-1399 (1978).
[CrossRef] [PubMed]

A. van der Schaaf and J. H. van Hateren, "Modelling the power spectra of natural images: statistics and information," Vision Res. 36, 2759-2770 (1996).
[CrossRef] [PubMed]

E. Poder, "Spatial-frequency spectra of printed characters and human visual perception," Vision Res. 43, 1507-1511 (2003).
[CrossRef] [PubMed]

N. J. Majaj, D. G. Pelli, P. Kurshan, and M. Palomares, "The role of spatial frequency channels in letter identification," Vision Res. 42, 1165-1184 (2002).
[CrossRef] [PubMed]

D. H. Parish and G. Sperling, "Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination," Vision Res. 31, 1399-1415 (1991).
[CrossRef] [PubMed]

M. A. Webster and J. D. Mollon, "Adaptation and the color statistics of natural images," Vision Res. 37, 3283-3298 (1997).
[CrossRef]

A. J. Bell and T. J. Sejnowski, "The 'independent components' of natural scenes are edge filters," Vision Res. 37, 3327-3338 (1997).
[CrossRef]

E. A. Essock, J. K. DeFord, B. C. Hansen, and M. J. Sinai, "Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect," Vision Res. 43, 1329-1335 (2003).
[CrossRef] [PubMed]

J. Gold, P. J. Bennett, and A. B. Sekuler, "Identification of band-pass filtered letters and faces by human and ideal observers," Vision Res. 39, 3537-3560 (1999).
[CrossRef]

D. L. Ruderman, "Origins of scaling in natural images," Vision Res. 37, 3385-3398 (1997).
[CrossRef]

R. M. Balboa, C. W. Tyler, and N. M. Grzywacz, "Occlusions contribute to scaling in natural images," Vision Res. 41, 955-964 (2001).
[CrossRef] [PubMed]

Other (8)

P. Eccarius and D. Brentari, "Symmetry and dominance: a cross-linguistic study of signs and classifier constructions," Lingua (to be published); www.sciencedirect.com.

R. G. Bosworth, C. E. Wright, M. S. Bartlett, D. P. Corina, and K. R. Dobkins, "Characterization of the visual properties of spatial frequency and speed in ASL signs," in Cross-Linguistic Perspectives in Sign Language Research. Selected Papers from TISLR 2000, A.E.Baker, B.van den Bogaerde, and O.Crasborn, eds. (Signum, 2003), pp. 265-282.

A. M. Martinez and R. Benavente, "The AR face database," CVC Tech. Rep. 24 (Computer Vision Center, Universitat Autònama de Barcelona, 1998) Available at http://rvl1.ecn.purdue.edu/~aleix/ar.html.

R. B. Wilbur and A. M. Martinez, "Physical correlates of prosodic structure in American Sign Language," presented at the Meeting of the Chicago Linguistics Society, April 25-27, 2002.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).
[CrossRef]

D. Brentari, A Prosodic Model of American Sign Language Phonology (MIT, 1998).

J. Huang and D. Mumford, "Statistics of natural images and models," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE Press, 1999), pp. 541-547.

M. A. Webster, "Pattern selective adaptation in color and form perception," in The Visual Neurosciences, M.L.Chalupa and S.J.Werner, eds. (MIT, 2003), pp. 936-947.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photography of ASL signs and image preparation. (a) An example of an original photograph image of DH signing CANADA and (b) original photograph image of DH in a neutral pose (arms at side). (c) and (d) The face, torso, and background in these two images have been removed, leaving only the arms, from shoulders to fingers. Fourier and entropy analyses were conducted on the arms-only images [(c) and (d)].

Fig. 2
Fig. 2

Example sign images. Several examples are shown of sign images included in our ASL sample. The top row has images for the signs DOCTOR and ENJOY made by RB and DH. For some signs that involve critical changes in position (e.g., ENJOY, LIFE) or hand shape (e.g., ARREST), two consecutive images were obtained, and these are shown in the middle and last rows (only for DH).

Fig. 3
Fig. 3

(a) Example face image from the AR face database.[66] (b) Example of a natural scene image from the van Hateren and van der Schaaf database.[67]

Fig. 4
Fig. 4

Example Fourier plots for (a) sign image obtained from the sign HEART and (b) the natural scene shown in Fig. 3. For each image, the Fourier transform is displayed as a 3D polar plot, where log amplitude, a, is plotted as a function of both spatial frequency (distance from the origin, r) and orientation (angle, θ). Note that horizontal objects in an image have vertical Fourier energy, since orientation refers to the orientation of individual sine waves. The natural scenes plot shows high energy in the vertical orientation, which has been related to horizontal layering in distant natural scenes.[18] (In the results and figures, we refer to orientation as orientation in the image, which is 90 deg shifted from the Fourier orientation.)

Fig. 5
Fig. 5

Amplitude versus spatial frequency. Mean log amplitude is plotted as a function of log spatial frequency (data collapsed across orientation) for signers (top) RB ( n = 46 images) and (bottom) DH ( n = 59 images). Data are shown for sign images (black curves) and the neutral pose (gray curves). For comparison, data are shown for a set of 100 faces taken from the AR database (dotted curves) and a set of 100 natural scene images taken from the van Hateren and van der Schaaf database (thin curves). Note that the faces and natural scenes data are plotted redundantly in both figures, to allow comparison with each signer’s data.

Fig. 6
Fig. 6

Entropy versus spatial frequency. Entropy is plotted as a function of log spatial frequency (data collapsed across orientation) for signers RB (thick black curve) and DH (gray curve), faces (dotted curve), and natural scenes (thin curve). Entropy could not be calculated for the neutral pose, which is a single image, since in this study entropy was calculated for a distribution of many images.

Fig. 7
Fig. 7

Amplitude versus orientation. Mean log amplitude is plotted as a function of orientation (data collapsed across spatial frequency) for signers (top) RB ( n = 46 images) and (bottom) DH ( n = 59 images). Data are shown for sign images (black curves) and the neutral pose (gray curves). For comparison, data are shown for the set of 100 faces taken from the AR database (dotted curves) and the set of 100 natural scene images taken from the van Hateren and der Schaaf database (thin curves). Note that the faces and natural scenes data are plotted redundantly in both figures, to allow comparison with each signer’s data. Also note that the X axis is centered at 0 deg (horizontal) to emphasize the sharpest peak in the data.

Fig. 8
Fig. 8

Entropy versus orientation. Entropy is plotted as a function of orientation (data collapsed across spatial frequency) for signers RB (black curve) and DH (gray curve), faces (dotted curve), and natural scenes (thin curve). Entropy could not be calculated for the neutral pose, which is a single image, since in this study entropy was calculated for a distribution of many images. Note that the X axis is centered at 0 deg (horizontal) to emphasize the sharpest trough in the data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = log 2 ( p ( x ) ) ,
H = E ( log 2 ( p ( x ) ) ) ,

Metrics