Abstract

A theoretical study of two-dimensional photonic crystals made of anisotropic material is presented. Detailed computation principles including a treatment of the TE and TM polarizations are given for a photonic crystal made of either uniaxially or biaxially anisotropic materials. These two polarizations can be decoupled as long as any one of the principal axes of the anisotropic material is perpendicular to the periodic plane of the photonic crystal. The symmetry loss due to the anisotropy of the material and the variation of the Brillouin zones relative to the tensor orientations are also analyzed. Furthermore, the symmetry properties of the two-dimensional photonic band structure are studied, and the resulting effect on the photonic bandgap and the dispersion properties of photonic crystal are analyzed as a function of the orientation of the anisotropic material.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [Crossref] [PubMed]
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [Crossref] [PubMed]
  3. J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [Crossref] [PubMed]
  5. T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
    [Crossref]
  6. B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv, and A. Scherer, "Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities," J. Opt. Soc. Am. B 15, 1155-1159 (1998).
    [Crossref]
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
    [Crossref]
  8. T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
    [Crossref]
  9. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 (2000).
    [Crossref]
  10. S. Enoch, G. Tayeb, and B. Gralak, "The richness of the dispersion relation of electromagnetic bandgap materials," IEEE Trans. Antennas Propag. 51, 2659-2666 (2003).
    [Crossref]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
    [Crossref]
  12. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
    [Crossref] [PubMed]
  13. P. Yariv and A. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-120.
  14. H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2002).
    [Crossref]
  15. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
    [Crossref]
  16. F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
    [Crossref]
  17. V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.
  18. Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
    [Crossref]
  19. I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
    [Crossref]
  20. Z. Y. Li, J. Wang, and B. Y. Gu, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
    [Crossref]
  21. K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
    [Crossref]
  22. K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
    [Crossref]
  23. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
    [Crossref]
  24. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
    [Crossref]
  25. C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
    [Crossref]
  26. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, andA. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
    [Crossref]
  27. D. M. Pustai, A. Sharkawy, S. Shi, and D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opt. 41, 5574-5579 (2002).
    [Crossref] [PubMed]
  28. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibers," Opt. Express 11, 2589-2596 (2003).
    [Crossref] [PubMed]
  29. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
    [Crossref] [PubMed]
  30. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
    [Crossref]
  31. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), pp. 14, 45, and 57.
  32. C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys., Part 1 40, 6391-6395 (2001).
    [Crossref]
  33. K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
    [Crossref] [PubMed]
  34. K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
    [Crossref]
  35. K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52, 7982-7986 (1995).
    [Crossref]

2004 (1)

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[Crossref]

2003 (5)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, and B. Gralak, "The richness of the dispersion relation of electromagnetic bandgap materials," IEEE Trans. Antennas Propag. 51, 2659-2666 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[Crossref]

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, andA. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[Crossref]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibers," Opt. Express 11, 2589-2596 (2003).
[Crossref] [PubMed]

2002 (3)

D. M. Pustai, A. Sharkawy, S. Shi, and D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opt. 41, 5574-5579 (2002).
[Crossref] [PubMed]

T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[Crossref]

H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2002).
[Crossref]

2001 (4)

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[Crossref] [PubMed]

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[Crossref]

C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys., Part 1 40, 6391-6395 (2001).
[Crossref]

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[Crossref]

2000 (3)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 (2000).
[Crossref]

T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
[Crossref]

1999 (3)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[Crossref]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[Crossref]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[Crossref]

1998 (5)

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[Crossref]

B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv, and A. Scherer, "Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities," J. Opt. Soc. Am. B 15, 1155-1159 (1998).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[Crossref]

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[Crossref]

Z. Y. Li, J. Wang, and B. Y. Gu, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[Crossref]

1996 (2)

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[Crossref] [PubMed]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[Crossref]

1995 (1)

K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52, 7982-7986 (1995).
[Crossref]

1993 (1)

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[Crossref]

1990 (1)

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

1987 (2)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[Crossref] [PubMed]

Atkin, D. M.

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Baba, T.

T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[Crossref]

Baughman, R. H.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[Crossref] [PubMed]

Birks, T. A.

Birner, A.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

Bjarklev, A.

Bosshard, Ch.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[Crossref]

Broeng, J.

Busch, K.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[Crossref]

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[Crossref]

Chan, C. T.

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

Chang, C. M.

C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys., Part 1 40, 6391-6395 (2001).
[Crossref]

Clark, N. A.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[Crossref] [PubMed]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.

Dridi, K. H.

T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
[Crossref]

D'Urso, B.

Enoch, S.

S. Enoch, G. Tayeb, and B. Gralak, "The richness of the dispersion relation of electromagnetic bandgap materials," IEEE Trans. Antennas Propag. 51, 2659-2666 (2003).
[Crossref]

Follonier, S.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[Crossref]

Forchel, A.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, andA. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[Crossref]

Foteinopolou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Gauza, S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[Crossref]

Gosele, U.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

Gralak, B.

S. Enoch, G. Tayeb, and B. Gralak, "The richness of the dispersion relation of electromagnetic bandgap materials," IEEE Trans. Antennas Propag. 51, 2659-2666 (2003).
[Crossref]

Gu, B. Y.

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[Crossref]

Z. Y. Li, J. Wang, and B. Y. Gu, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[Crossref]

Günter, P.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[Crossref]

Gurzadayan, G. G.

V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.

Ha, Y.-K.

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[Crossref]

Hermann, D. S.

Ho, K.-M.

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

Hsu, C. S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[Crossref]

Janarthanan, N.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[Crossref]

Joannopoulus, J. D.

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.

John, S.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[Crossref]

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[Crossref]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[Crossref] [PubMed]

Kamp, M.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, andA. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[Crossref]

Kang, D.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[Crossref] [PubMed]

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[Crossref]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[Crossref]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[Crossref]

Kee, C.-S.

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[Crossref]

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[Crossref]

Kim, J.-E.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[Crossref]

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[Crossref]

Klopf, F.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, andA. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[Crossref]

Knight, J. C.

Knöpfle, G.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[Crossref]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[Crossref]

Larsen, T. T.

Lee, J.-C.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[Crossref]

Lehmann, V.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

Leonard, S. W.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

Li, Z. Y.

Z. Y. Li, J. Wang, and B. Y. Gu, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[Crossref]

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[Crossref]

Lim, H.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[Crossref]

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[Crossref]

Maclennan, J. E.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[Crossref] [PubMed]

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[Crossref]

Meade, R. D.

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.

Mondia, J. P.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[Crossref]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.

Notomi, M.

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 (2000).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[Crossref]

O'Brien, J.

Ozaki, M.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[Crossref]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[Crossref]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[Crossref]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

Painter, O.

Pan, F.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[Crossref]

Park, H. Y.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[Crossref]

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[Crossref]

Prather, D. W.

Pustai, D. M.

Reithmaier, J. P.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, andA. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[Crossref]

Russell, P. St. J.

Sakoda, K.

K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52, 7982-7986 (1995).
[Crossref]

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), pp. 14, 45, and 57.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[Crossref]

Scherer, A.

Schuller, C.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, andA. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[Crossref]

Sharkawy, A.

Shi, S.

Shieh, H. P. D.

C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys., Part 1 40, 6391-6395 (2001).
[Crossref]

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[Crossref]

Sondergaard, T.

T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
[Crossref]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

Spreiter, R.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[Crossref]

Stroud, D.

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[Crossref]

Takeda, H.

H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2002).
[Crossref]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[Crossref]

Tayeb, G.

S. Enoch, G. Tayeb, and B. Gralak, "The richness of the dispersion relation of electromagnetic bandgap materials," IEEE Trans. Antennas Propag. 51, 2659-2666 (2003).
[Crossref]

Toader, O.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

Tombrello, T.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[Crossref]

van Driel, H. M.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

Wang, J.

Z. Y. Li, J. Wang, and B. Y. Gu, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[Crossref]

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[Crossref]

Wen, C. H.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[Crossref]

Winn, J. N.

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.

Wong, M. S.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[Crossref]

Wu, S. T.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[Crossref] [PubMed]

Yang, Y.-C.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[Crossref]

Yariv, A.

Yariv, P.

P. Yariv and A. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-120.

Yeh, A.

P. Yariv and A. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-120.

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[Crossref]

H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2002).
[Crossref]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[Crossref]

Young, K. H.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[Crossref]

Zabel, I. H. H.

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[Crossref]

Zakhidov, A. A.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[Crossref]

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[Crossref]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[Crossref]

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, andA. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[Crossref]

IEEE Trans. Antennas Propag. (1)

S. Enoch, G. Tayeb, and B. Gralak, "The richness of the dispersion relation of electromagnetic bandgap materials," IEEE Trans. Antennas Propag. 51, 2659-2666 (2003).
[Crossref]

J. Appl. Phys. (1)

H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 1 (2)

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[Crossref]

C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys., Part 1 40, 6391-6395 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (8)

T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096 (1998).
[Crossref]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 (2000).
[Crossref]

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[Crossref]

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[Crossref]

K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52, 7982-7986 (1995).
[Crossref]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[Crossref]

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[Crossref]

Phys. Rev. E (1)

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[Crossref]

Phys. Rev. Lett. (7)

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[Crossref] [PubMed]

Z. Y. Li, J. Wang, and B. Y. Gu, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[Crossref]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[Crossref] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[Crossref] [PubMed]

Other (4)

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.

P. Yariv and A. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-120.

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), pp. 14, 45, and 57.

V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Brillouin zones of (a) square lattice and (b) hexagonal lattice.

Fig. 2
Fig. 2

Contour plot representing the TM bands of a PC with a hexagonal lattice and anisotropic material, where the gray scale indicates normalized frequencies. The optic axis orientation is perpendicular to the periodic plane. (a) First band and (b) second band.

Fig. 3
Fig. 3

Contour plot representing the TM bands of a PC with a hexagonal lattice and anisotropic material. The optic axis orientation is parallel to the periodic plane. (a) First band with a α = 0 ° . (b)–(h) Second bands with α = 0 ° , 15°, 30°, 45°, 60°, 75°, and 90 ° , respectively.

Fig. 4
Fig. 4

A cut through along the K - Γ - K axis for the second band with α = 0 ° for Δ n = 0 [Fig. 2b, isotropic], 0.3, and 0.6 [Fig. 3b].

Fig. 5
Fig. 5

(a) and (b) The second band for a very weakly modulated PC with a hexagonal lattice and anisotropic material. (a) α = 0 ° , (b) α = 90 ° , (c) and (d) similar to (a) and (b) but with finite modulation.

Fig. 6
Fig. 6

Gap-to-midgap ratio of a hexagonal-lattice, LC-infiltrated PC made of silicon as a function of the orientation of the optic axis in the periodic plane of the PC. The insert shows the gap-to-midgap ratio as a function of birefringence for α = 0 ° .

Fig. 7
Fig. 7

Contour plot representing the second TM band of a PC with a square lattice and anisotropic material. (a) β = 0 ° , (b)–(h) β = 90 ° and α = 0 ° , 15°, 30°, 45°, 60°, 75°, and 90 ° , respectively.

Fig. 8
Fig. 8

Refraction analysis between two media, m 1 (isotropic medium) and m 2 (arbitrary medium), e.g., PC.

Fig. 9
Fig. 9

Propagation angle versus incident angle. Solid curves, forward wave; dashed curves, reverse wave.

Tables (2)

Tables Icon

Table 1 Inequivalent Transformations for Various Principal Axis Orientations in a Square-Lattice PC

Tables Icon

Table 2 Inequivalent Transformations for Various Principal Axis Orientations in a Hexagonal-Lattice PC

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

× E ( r , t ) = μ o H ( r , t ) t ,
× H ( r , t ) = ϵ o ϵ ( r ) E ( r , t ) t ,
ϵ ( r ) = [ ϵ 11 ( r ) ϵ 12 ( r ) ϵ 13 ( r ) ϵ 21 ( r ) ϵ 22 ( r ) ϵ 23 ( r ) ϵ 31 ( r ) ϵ 32 ( r ) ϵ 33 ( r ) ] .
ϵ i j ( r ) = ϵ b i j + ( ϵ a i j ϵ b i j ) p ( r ) ,
Q = [ cos γ cos β cos α sin γ sin α cos γ cos β sin α sin γ cos α cos γ sin β sin γ cos β cos α + cos γ sin α sin γ cos β sin α + cos γ cos α sin γ sin β sin β cos α sin β sin α cos β ] .
E z y = μ o H x t ,
E z x = μ o H y t ,
E y x E x y = μ o H z t ,
H z y = ϵ o ϵ 11 ( r ) E x t + ϵ o ϵ 12 ( r ) E y t + ϵ o ϵ 13 ( r ) E z t ,
H z x = ϵ o ϵ 21 ( r ) E x t ϵ o ϵ 22 ( r ) E y t ϵ o ϵ 23 ( r ) E z t ,
H y x H x y = ϵ o ϵ 31 ( r ) E x t + ϵ o ϵ 32 ( r ) E y t + ϵ o ϵ 33 ( r ) E z t ,
ϵ a 13 = ϵ a 31 = sin β { cos β cos α ( n z 2 n x 2 cos 2 γ n y 2 sin 2 γ ) + ( n x 2 n y 2 ) sin γ cos γ sin α } ,
ϵ a 23 = ϵ a 32 = sin β { cos β cos α ( n x 2 cos 2 γ + n y 2 sin 2 γ n z 2 ) + ( n x 2 n y 2 ) sin γ cos γ cos α } .
ϵ a = [ n x 2 cos 2 α + n y 2 sin 2 α ( n y 2 n x 2 ) cos α sin α 0 ( n y 2 n x 2 ) cos α sin α n x 2 sin 2 α + n y 2 cos 2 α 0 0 0 n z 2 ] ,
ϵ a = [ n y 2 sin 2 α + n z 2 cos 2 α ( n y 2 n z 2 ) cos α sin α 0 ( n y 2 n z 2 ) cos α sin α n y 2 cos 2 α + n z 2 sin 2 α 0 0 0 n x 2 ] ,
ϵ 33 1 ( r ) { 2 x 2 + 2 y 2 } E z ( r ) = ω 2 μ o ϵ o E z ( r ) ,
x y × ϵ r 1 ( r ) × x y × H z ( r ) z ̂ = ω ̂ μ o ϵ o H z ( r ) z ̂ ,
ϵ r ( r ) = [ ϵ 11 ( r ) ϵ 12 ( r ) ϵ 21 ( r ) ϵ 22 ( r ) ] ,
E z , k ( r ) = G E z , k ( G ) e j ( k + G ) r ,
H z , k ( r ) = G H z , k ( G ) e j ( k + G ) r ,
G ϵ z GG 1 ( G G ) k + G k + G F z , k ( G ) = ( ω c ) 2 F z , k ( G ) ,
G ( k + G ) ϵ r GG 1 ( G G ) ( k + G ) H z , k ( G ) = ( ω c ) 2 H z , k ( G ) ,
C 4 ν = { E , C 2 , C 4 , C 4 1 , σ 45 ° , σ 0 ° , σ 45 ° , σ 90 ° } ,
C 6 ν = { E , C 2 , C 3 , C 3 1 , C 6 , C 6 1 , σ 60 ° , σ 30 ° , σ 0 ° , σ 30 ° , σ 60 ° , σ 90 ° } ,
{ E , C 2 , σ α , σ α + 90 ° } ,

Metrics