Abstract

In the framework of the perturbation approach to the diffusion equation, an analytical expression is derived to describe the effects on the time-resolved transmittance due to the presence of a spatially varying scattering inclusion hidden inside a diffusive slab. This formula assumes that the reduced scattering coefficient of the inclusion is spatially Gaussian distributed and complements that obtained for the absorptive case. The accuracy and the application range of the perturbed transmittance are investigated through comparisons with the numerical solutions of the time-dependent diffusion equation given by using the finite-element method. The proposed perturbation model is validated through a fitting procedure that determines the relative error in retrieving the scattering perturbation parameter of the inclusion located at the midplane of the slab.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004).
    [CrossRef] [PubMed]
  2. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
    [CrossRef] [PubMed]
  3. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
    [CrossRef] [PubMed]
  4. B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997).
    [CrossRef] [PubMed]
  5. G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994).
    [CrossRef]
  6. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999).
    [CrossRef]
  7. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999).
    [CrossRef]
  8. A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
    [CrossRef] [PubMed]
  9. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).
    [CrossRef] [PubMed]
  10. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
    [PubMed]
  11. A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
    [CrossRef] [PubMed]
  12. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
    [CrossRef] [PubMed]
  13. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
    [CrossRef] [PubMed]
  14. J. C. Hebden, H. Veenstra, H. Dehghani, H. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278-3287 (2001).
    [CrossRef]
  15. U. Hampel, E. Schleicher, and R. Freyer, "Volume image reconstruction for diffuse optical tomography," Appl. Opt. 41, 3816-3826 (2002).
    [CrossRef] [PubMed]
  16. Y. Xu, X. Gu, T. Khan, and H. Jiang, "Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data," Appl. Opt. 41, 5427-5437 (2002).
    [CrossRef] [PubMed]
  17. T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
    [CrossRef] [PubMed]
  18. J. Ye, K. Webb, R. Millane, and T. Downar, "Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography," J. Opt. Soc. Am. A 16, 1814-1826 (1999).
    [CrossRef]
  19. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, "Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements," Appl. Opt. 38, 4237-4246 (1999).
    [CrossRef]
  20. F. Gao, Y. Tanikawa, H. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
    [CrossRef] [PubMed]
  21. T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
    [CrossRef] [PubMed]
  22. S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, and K. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
    [CrossRef]
  23. D. Grosenick, H. Wabnitz, and H. Rinneberg, "Time-resolved imaging of solid phantoms for optical mammography," Appl. Opt. 36, 221-231 (1997).
    [CrossRef] [PubMed]
  24. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
    [CrossRef] [PubMed]
  25. D. Contini, F. Martelli, and G. Zaccanti, "Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory," Appl. Opt. 36, 4587-4599 (1997).
    [CrossRef] [PubMed]
  26. J. C. Hebden and S. R. Arridge, "Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain," Appl. Opt. 35, 6788-6796 (1996).
    [CrossRef] [PubMed]
  27. M. Morin, S. Verrealut, A. Mailloux, J. Fréchette, S. Chatigny, Y. Painchaud, and P. Beaudry, "Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis," Appl. Opt. 39, 2840-2852 (2000).
    [CrossRef]
  28. S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, "Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration," Appl. Opt. 40, 4622-4632 (2001).
    [CrossRef]
  29. A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, "Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography," Opt. Express 11, 853-867 (2003).
    [CrossRef] [PubMed]
  30. S. D. Nicola, R. Esposito, and M. Lepore, "Perturbation model to predict the effect of spatially varying absorptive inhomogeneities in diffusing media," Phys. Rev. E 68, 021901 (2003).
    [CrossRef]
  31. P. K. Burguess, P. M. Kulesa, L. D. Murray, and E. C. Alvord, Jr., "The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas," J. Neuropathol. Exp. Neurol. 56, 704-713 (1997).
  32. L. M. Sander and T. S. Deisboeck, "Growth patterns of microscopic brain tumors," Phys. Rev. E 66, 051901 (2002).
    [CrossRef]
  33. L. M. Wein, J. T. Wu, A. C. Ianculescu, and R. K. Puri, "A mathematical model of the impact of the infused targeted cytotoxic agents on brain tumours: implication for detection, design and delivery," Cell Prolif. 35, 343-361 (2002).
    [CrossRef] [PubMed]
  34. R. Esposito, S. D. Nicola, M. Lepore, I. Delfino, and P. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A Pure Appl. Opt. 6, 1-6 (2004).
    [CrossRef]
  35. S. D. Nicola, R. Esposito, M. Lepore, and P. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
    [CrossRef]
  36. V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
    [CrossRef] [PubMed]
  37. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
    [CrossRef] [PubMed]
  38. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
    [CrossRef] [PubMed]
  39. J. M. Kaltenbach and M. Kaschke, "Frequency- and time-domain modeling of light transport in random media," in Proc. SPIE IS11, 65-86 (1993).
  40. S. R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995).
    [CrossRef] [PubMed]
  41. S. R. Arridge, M. Schwieger, M. Hirakoa, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
    [CrossRef] [PubMed]
  42. M. Shweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
    [CrossRef]
  43. Y. Painchaud, A. Mailloux, M. Mori, S. Verreault, and P. Beaudry, "Time-domain optical imaging: discrimination between scattering and absorption," Appl. Opt. 38, 3686-3692 (1999).
    [CrossRef]
  44. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, "Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments," Appl. Opt. 37, 1973-1981 (1998).
    [CrossRef]

2005

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
[CrossRef] [PubMed]

2004

R. Esposito, S. D. Nicola, M. Lepore, I. Delfino, and P. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A Pure Appl. Opt. 6, 1-6 (2004).
[CrossRef]

S. D. Nicola, R. Esposito, M. Lepore, and P. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004).
[CrossRef] [PubMed]

2003

2002

V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

L. M. Sander and T. S. Deisboeck, "Growth patterns of microscopic brain tumors," Phys. Rev. E 66, 051901 (2002).
[CrossRef]

L. M. Wein, J. T. Wu, A. C. Ianculescu, and R. K. Puri, "A mathematical model of the impact of the infused targeted cytotoxic agents on brain tumours: implication for detection, design and delivery," Cell Prolif. 35, 343-361 (2002).
[CrossRef] [PubMed]

U. Hampel, E. Schleicher, and R. Freyer, "Volume image reconstruction for diffuse optical tomography," Appl. Opt. 41, 3816-3826 (2002).
[CrossRef] [PubMed]

Y. Xu, X. Gu, T. Khan, and H. Jiang, "Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data," Appl. Opt. 41, 5427-5437 (2002).
[CrossRef] [PubMed]

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

F. Gao, Y. Tanikawa, H. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
[CrossRef] [PubMed]

2001

2000

M. Morin, S. Verrealut, A. Mailloux, J. Fréchette, S. Chatigny, Y. Painchaud, and P. Beaudry, "Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis," Appl. Opt. 39, 2840-2852 (2000).
[CrossRef]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

1999

1998

1997

D. Grosenick, H. Wabnitz, and H. Rinneberg, "Time-resolved imaging of solid phantoms for optical mammography," Appl. Opt. 36, 221-231 (1997).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, "Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory," Appl. Opt. 36, 4587-4599 (1997).
[CrossRef] [PubMed]

P. K. Burguess, P. M. Kulesa, L. D. Murray, and E. C. Alvord, Jr., "The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas," J. Neuropathol. Exp. Neurol. 56, 704-713 (1997).

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997).
[CrossRef] [PubMed]

1996

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

J. C. Hebden and S. R. Arridge, "Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain," Appl. Opt. 35, 6788-6796 (1996).
[CrossRef] [PubMed]

1995

S. R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995).
[CrossRef] [PubMed]

M. Shweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef]

1994

G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994).
[CrossRef]

1993

J. M. Kaltenbach and M. Kaschke, "Frequency- and time-domain modeling of light transport in random media," in Proc. SPIE IS11, 65-86 (1993).

S. R. Arridge, M. Schwieger, M. Hirakoa, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Alfano, R. R.

Alrubaiee, M.

Alvord, E. C.

P. K. Burguess, P. M. Kulesa, L. D. Murray, and E. C. Alvord, Jr., "The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas," J. Neuropathol. Exp. Neurol. 56, 704-713 (1997).

Arridge, S.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
[CrossRef] [PubMed]

Arridge, S. R.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, H. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278-3287 (2001).
[CrossRef]

J. C. Hebden and S. R. Arridge, "Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain," Appl. Opt. 35, 6788-6796 (1996).
[CrossRef] [PubMed]

S. R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995).
[CrossRef] [PubMed]

M. Shweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef]

S. R. Arridge, M. Schwieger, M. Hirakoa, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Beaudry, P.

Berger, A.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Bevilacqua, F.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Burguess, P. K.

P. K. Burguess, P. M. Kulesa, L. D. Murray, and E. C. Alvord, Jr., "The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas," J. Neuropathol. Exp. Neurol. 56, 704-713 (1997).

Butler, J.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Cai, W.

Carraresi, S.

Cerussi, A.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Chatigny, S.

Chernomordik, V.

V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, "Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments," Appl. Opt. 37, 1973-1981 (1998).
[CrossRef]

Contini, D.

Cubeddu, R.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
[CrossRef] [PubMed]

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, "Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography," Opt. Express 11, 853-867 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999).
[CrossRef]

D'Andrea, C.

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Danesini, G.

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

Dehghani, H.

Deisboeck, T. S.

L. M. Sander and T. S. Deisboeck, "Growth patterns of microscopic brain tumors," Phys. Rev. E 66, 051901 (2002).
[CrossRef]

Delfino, I.

R. Esposito, S. D. Nicola, M. Lepore, I. Delfino, and P. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A Pure Appl. Opt. 6, 1-6 (2004).
[CrossRef]

Delpy, D. T.

J. C. Hebden, H. Veenstra, H. Dehghani, H. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278-3287 (2001).
[CrossRef]

M. Shweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef]

S. R. Arridge, M. Schwieger, M. Hirakoa, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Dierkes, T.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
[CrossRef] [PubMed]

Douek, M.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Downar, T.

Dunn, J. F.

Espinoza, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Esposito, R.

S. D. Nicola, R. Esposito, M. Lepore, and P. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

R. Esposito, S. D. Nicola, M. Lepore, I. Delfino, and P. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A Pure Appl. Opt. 6, 1-6 (2004).
[CrossRef]

S. D. Nicola, R. Esposito, and M. Lepore, "Perturbation model to predict the effect of spatially varying absorptive inhomogeneities in diffusing media," Phys. Rev. E 68, 021901 (2003).
[CrossRef]

Everdell, N.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, and K. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Franceschini, M.

Franceschini, M. A.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Fréchette, J.

Freyer, R.

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Gandjbakhche, A.

V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

Gao, F.

Gayen, S. K.

Gibson, A.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Grosenick, D.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999).
[CrossRef]

D. Grosenick, H. Wabnitz, and H. Rinneberg, "Time-resolved imaging of solid phantoms for optical mammography," Appl. Opt. 36, 221-231 (1997).
[CrossRef] [PubMed]

Gu, X.

Hampel, U.

Hattery, D.

V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

Hebden, J. C.

Hillman, H. M. C.

Hirakoa, M.

S. R. Arridge, M. Schwieger, M. Hirakoa, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Hiraoka, M.

M. Shweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef]

Holcombe, R.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Holcombe, R. F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Ianculescu, A. C.

L. M. Wein, J. T. Wu, A. C. Ianculescu, and R. K. Puri, "A mathematical model of the impact of the infused targeted cytotoxic agents on brain tumours: implication for detection, design and delivery," Cell Prolif. 35, 343-361 (2002).
[CrossRef] [PubMed]

Indovina, P.

R. Esposito, S. D. Nicola, M. Lepore, I. Delfino, and P. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A Pure Appl. Opt. 6, 1-6 (2004).
[CrossRef]

S. D. Nicola, R. Esposito, M. Lepore, and P. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

Jakubowski, D.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Jiang, H.

Jiang, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Kaltenbach, J. M.

J. M. Kaltenbach and M. Kaschke, "Frequency- and time-domain modeling of light transport in random media," in Proc. SPIE IS11, 65-86 (1993).

Kaschke, M.

S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, and K. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

J. M. Kaltenbach and M. Kaschke, "Frequency- and time-domain modeling of light transport in random media," in Proc. SPIE IS11, 65-86 (1993).

Khan, T.

Koelzer, J. G.

G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994).
[CrossRef]

Kogel, C.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Kulesa, P. M.

P. K. Burguess, P. M. Kulesa, L. D. Murray, and E. C. Alvord, Jr., "The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas," J. Neuropathol. Exp. Neurol. 56, 704-713 (1997).

Lanning, R.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Lax, M.

Lepore, M.

S. D. Nicola, R. Esposito, M. Lepore, and P. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

R. Esposito, S. D. Nicola, M. Lepore, I. Delfino, and P. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A Pure Appl. Opt. 6, 1-6 (2004).
[CrossRef]

S. D. Nicola, R. Esposito, and M. Lepore, "Perturbation model to predict the effect of spatially varying absorptive inhomogeneities in diffusing media," Phys. Rev. E 68, 021901 (2003).
[CrossRef]

Macdonald, R.

Mailloux, A.

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Martelli, F.

McBride, T.

Messina, F.

Millane, R.

Mitic, G.

G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994).
[CrossRef]

Moesta, K.

V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, and K. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

Moesta, K. T.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Möller, M.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
[CrossRef] [PubMed]

Mori, M.

Morin, M.

Mucke, J.

Murray, L. D.

P. K. Burguess, P. M. Kulesa, L. D. Murray, and E. C. Alvord, Jr., "The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas," J. Neuropathol. Exp. Neurol. 56, 704-713 (1997).

Nicola, S. D.

S. D. Nicola, R. Esposito, M. Lepore, and P. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

R. Esposito, S. D. Nicola, M. Lepore, I. Delfino, and P. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A Pure Appl. Opt. 6, 1-6 (2004).
[CrossRef]

S. D. Nicola, R. Esposito, and M. Lepore, "Perturbation model to predict the effect of spatially varying absorptive inhomogeneities in diffusing media," Phys. Rev. E 68, 021901 (2003).
[CrossRef]

Nossal, R.

Osterberg, U.

Otto, J.

G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994).
[CrossRef]

Painchaud, Y.

Paulsen, K.

Paulsen, K. D.

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Pham, T.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Pifferi, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
[CrossRef] [PubMed]

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, "Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography," Opt. Express 11, 853-867 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999).
[CrossRef]

Plies, E.

G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994).
[CrossRef]

Pogue, B.

Pogue, B. W.

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Poplack, S. P.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Puri, R. K.

L. M. Wein, J. T. Wu, A. C. Ianculescu, and R. K. Puri, "A mathematical model of the impact of the infused targeted cytotoxic agents on brain tumours: implication for detection, design and delivery," Cell Prolif. 35, 343-361 (2002).
[CrossRef] [PubMed]

Rinneberg, H.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, and H. Rinneberg, "Time-resolved imaging of solid phantoms for optical mammography," Appl. Opt. 36, 221-231 (1997).
[CrossRef] [PubMed]

Rinneberg, H. H.

Sander, L. M.

L. M. Sander and T. S. Deisboeck, "Growth patterns of microscopic brain tumors," Phys. Rev. E 66, 051901 (2002).
[CrossRef]

Schlag, P.

V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, and K. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

Schlag, P. M.

T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Schleicher, E.

Schweiger, M.

Schwieger, M.

S. R. Arridge, M. Schwieger, M. Hirakoa, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Shatir, T. S. M.

Shweiger, M.

M. Shweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef]

Soelkner, G.

G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994).
[CrossRef]

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Spinelli, L.

Springett, R.

Srinivasan, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Stroszczynski, C.

Svaasand, L.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Tanikawa, Y.

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
[CrossRef] [PubMed]

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, "Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography," Opt. Express 11, 853-867 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999).
[CrossRef]

Testorf, M.

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
[CrossRef] [PubMed]

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, "Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography," Opt. Express 11, 853-867 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999).
[CrossRef]

Tosteson, T. D.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Tromberg, B.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999).
[CrossRef]

Veenstra, H.

Verrealut, S.

Verreault, S.

Wabnitz, H.

Walker, S.

Webb, K.

Wein, L. M.

L. M. Wein, J. T. Wu, A. C. Ianculescu, and R. K. Puri, "A mathematical model of the impact of the infused targeted cytotoxic agents on brain tumours: implication for detection, design and delivery," Cell Prolif. 35, 343-361 (2002).
[CrossRef] [PubMed]

Wu, J. T.

L. M. Wein, J. T. Wu, A. C. Ianculescu, and R. K. Puri, "A mathematical model of the impact of the infused targeted cytotoxic agents on brain tumours: implication for detection, design and delivery," Cell Prolif. 35, 343-361 (2002).
[CrossRef] [PubMed]

Xu, H.

Xu, M.

Xu, Y.

Yamada, Y.

Yates, T.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Ye, J.

Zaccanti, G.

Zevallos, M.

Zhao, H.

Zinth, W.

G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994).
[CrossRef]

Acad. Radiol.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Appl. Opt.

S. R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995).
[CrossRef] [PubMed]

Y. Painchaud, A. Mailloux, M. Mori, S. Verreault, and P. Beaudry, "Time-domain optical imaging: discrimination between scattering and absorption," Appl. Opt. 38, 3686-3692 (1999).
[CrossRef]

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, "Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments," Appl. Opt. 37, 1973-1981 (1998).
[CrossRef]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, H. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278-3287 (2001).
[CrossRef]

U. Hampel, E. Schleicher, and R. Freyer, "Volume image reconstruction for diffuse optical tomography," Appl. Opt. 41, 3816-3826 (2002).
[CrossRef] [PubMed]

Y. Xu, X. Gu, T. Khan, and H. Jiang, "Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data," Appl. Opt. 41, 5427-5437 (2002).
[CrossRef] [PubMed]

S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, and K. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

D. Grosenick, H. Wabnitz, and H. Rinneberg, "Time-resolved imaging of solid phantoms for optical mammography," Appl. Opt. 36, 221-231 (1997).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, "Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory," Appl. Opt. 36, 4587-4599 (1997).
[CrossRef] [PubMed]

J. C. Hebden and S. R. Arridge, "Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain," Appl. Opt. 35, 6788-6796 (1996).
[CrossRef] [PubMed]

M. Morin, S. Verrealut, A. Mailloux, J. Fréchette, S. Chatigny, Y. Painchaud, and P. Beaudry, "Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis," Appl. Opt. 39, 2840-2852 (2000).
[CrossRef]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, "Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration," Appl. Opt. 40, 4622-4632 (2001).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, "Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements," Appl. Opt. 38, 4237-4246 (1999).
[CrossRef]

F. Gao, Y. Tanikawa, H. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999).
[CrossRef]

Cell Prolif.

L. M. Wein, J. T. Wu, A. C. Ianculescu, and R. K. Puri, "A mathematical model of the impact of the infused targeted cytotoxic agents on brain tumours: implication for detection, design and delivery," Cell Prolif. 35, 343-361 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt.

V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef] [PubMed]

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

J. Neuropathol. Exp. Neurol.

P. K. Burguess, P. M. Kulesa, L. D. Murray, and E. C. Alvord, Jr., "The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas," J. Neuropathol. Exp. Neurol. 56, 704-713 (1997).

J. Opt. A Pure Appl. Opt.

R. Esposito, S. D. Nicola, M. Lepore, I. Delfino, and P. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A Pure Appl. Opt. 6, 1-6 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

S. R. Arridge, M. Schwieger, M. Hirakoa, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

M. Shweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef]

Neoplasia

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Phys. Med. Biol.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005).
[CrossRef] [PubMed]

Phys. Rev. E

L. M. Sander and T. S. Deisboeck, "Growth patterns of microscopic brain tumors," Phys. Rev. E 66, 051901 (2002).
[CrossRef]

S. D. Nicola, R. Esposito, M. Lepore, and P. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

S. D. Nicola, R. Esposito, and M. Lepore, "Perturbation model to predict the effect of spatially varying absorptive inhomogeneities in diffusing media," Phys. Rev. E 68, 021901 (2003).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997).
[CrossRef] [PubMed]

Proc. SPIE

G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994).
[CrossRef]

J. M. Kaltenbach and M. Kaschke, "Frequency- and time-domain modeling of light transport in random media," in Proc. SPIE IS11, 65-86 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometric scheme assumed for the perturbation model. A Gaussian scattering inclusion of cylindrical-shaped geometry with radius R and height h is centered at z = z p c inside a turbid slab of thickness d. A pulsed light beam illuminates the front surface of the scattering slab at plane z = 0 . The photons are assumed to be initially isotropically scattered at a depth z s = 1 μ s below the front surface. The time-resolved transmittance is measured by a detector at plane z = d coaxial with the source and with the inclusion.

Fig. 2
Fig. 2

Time-resolved transmitted signals T ( t ) and T n u m ( t ) computed by using the perturbation model and the FEM simulation, respectively, for two values of the relative scattering perturbation parameter, Δ μ s μ s = 0.3 and Δ μ s μ s = 0.3 . Numerical results refer to a scattering slab with thickness d = 40 mm , absorption coefficient μ a = 0.01 mm 1 , reduced scattering coefficient μ s = 1.0 mm 1 , and refractive index mismatch n = 1.4 . The inhomogeneity with R = 2 h is located at the middle plane of the slab: the radius of the inclusion is (a) R = 2.5 mm , (b) R = 5 mm , (c) R = 7.5 mm , (d) R = 10 mm .

Fig. 3
Fig. 3

Temporal behavior of the contrast functions δ T ( t ) T 0 ( t ) and δ T n u m ( t ) T 0 ( t ) computed by the perturbation model and the FEM simulation, respectively, for two values of the relative scattering perturbation Δ μ s μ s = 0.3 and Δ μ s μ s = 0.3 . Row panels refer to the same value of the reduced scattering coefficient μ s , whereas column panels refer to the same value of the size R of the inclusion. The other parameters are the same as Fig. 2.

Fig. 4
Fig. 4

Numerical calculation of the relative error ϵ Δ μ s as a function of the relative scattering perturbation Δ μ s μ s . The three panels are obtained for increasing values of the reduced scattering coefficient of the host medium: μ s = ( a ) 0.5, (b) 1.0, (c) 1.5 mm 1 . In each panel the values R = 2.5 , 5 , 7.5 , 10 mm for the radius of the inclusion have been considered.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

δ μ s ( r ) = Δ μ s exp ( ln 2 ( ρ p R ) 2 ) ,
[ ( D + δ D ( r ) ) 1 v t μ a ] Φ ( r , t ; r s , t s = 0 )
= S ( r , t ; r s , t s = 0 ) ,
δ D ( r ) = 1 3 μ s δ μ s ( r ) μ s 1 + δ μ s ( r ) μ s
Φ ( r , t ; r s , t s = 0 ) = exp ( μ a v t ) Ψ ( r , t ; r s , t s = 0 ) ,
[ ( D + δ D ( r ) ) 1 v t ] Ψ ( r , t ; r s , t s = 0 )
= S ( r , t ; r s , t s = 0 ) .
Ψ ( r , t ; r s , t s ) = Ψ 0 ( r , t ; r s , t s ) + δ Ψ ( r , t ; r s , t s ) ,
Ψ 0 ( r , t ; r s , t s ) = exp ( ρ 2 ( 4 D v ( t t s ) ) ) 8 π 2 D d e ( t t s ) m = 1 exp ( π 2 m 2 D v ( t t s ) d e 2 ) × sin ( m π ( z s + z e ) d e ) sin ( m π ( d + z e ) d e ) ,
A ( n ) = { 3.084635 6.531194 n + 8.357854 n 2 5.082751 n 3 + 1.171382 n 4 , n 1 504.332889 2641.00214 n + 5923.699064 n 2 7376.355814 n 3 + 5507.53041 n 4 2463.357945 n 5 + 610.956547 n 6 64.8047 n 7 , n > 1 } .
δ Ψ ( r , t ; r s , t s = 0 ) = 0 t d t d r p Ψ 0 ( r , t ; r p , t ) × ( δ D ( r p ) Ψ 0 ( r p , t ; r s , 0 ) ) .
T ( r m , t ; r s , t s = 0 ) = 2 π exp ( μ a v t ) A ( n ) Ψ ( r m , t ; r s , t s = 0 ) ,
T ( r m , t ; r s , t s = 0 ) = T 0 ( r m , t ; r s , t s = 0 ) + δ T ( r m , t ; r s , t s = 0 ) ,
T 0 ( r m , t ; r s , t s = 0 ) = 2 π exp ( μ a v t ) A ( n ) Ψ 0 ( r m , t ; r s , t s = 0 )
δ T ( r m , t ; r s , t s = 0 ) = 2 π exp ( μ a v t ) A ( n ) δ Ψ ( r m , t ; r s , t s = 0 ) .
δ T ( r m , t ; r s , t s = 0 ) = Δ μ s 3 b 8 π 2 d e 4 A ( n ) t k , l = 1 exp ( μ a v t π 2 D v t ( k 2 + l 2 ) 2 d e ) × R k , l ( R , t ) Z k , l ( z p c , h ) ,
R k , l ( R , t ) = 1 2 ( 1 + b ) 1 2 { π 2 n 2 D v t ( E + + E ) + d e 2 4 ( 1 + b ) [ 8 ( 1 + b ) 1 2 cosh ( c 2 ) b ( α + E + α E + ) ] } ,
c = π 2 D v t d e 2 ( k 2 l 2 ) ,
α ± = 2 ± c ( 1 + b ) 1 2 ; β ± = c 2 ( 1 ± ( 1 + b ) 1 2 ) ,
E ± = exp ( c ( 1 + b ) 1 2 2 ) ( Ei ( ± β + ) Ei ( β ) )
Ei ( x ) = x e y y d y ,
Z k , l ( z p c , h ) = d e k 2 l 2 sin ( k π ( z e + d ) d e ) sin ( l π ( z e + z s ) d e ) ( γ + γ ) ,
γ ± = ( k ± l ) [ sin ( ( k l ) π ( z e + z p c + h 2 ) d e ) sin ( ( k l ) π ( z e + z p c h 2 ) d e ) ] .
R k , k ( R , t ) = 1 ( 1 + b ) 3 2 { d e 2 ( 1 + b ) 1 2 + [ 2 π 2 D k 2 v t ( 1 + b ) + b d e 2 ] coth 1 ( ( 1 + b ) 1 2 ) } ,
Z k , k ( z p c , h ) = 1 2 k sin ( k π ( z e + z s ) d e ) sin ( k π ( z e + d ) d e ) [ 2 π k h d e sin ( 2 k π ( z e + z p c + h 2 ) d e ) + d e sin ( 2 k π ( z e + z p c h 2 ) d e ) ] .
[ ( D + δ D ( r ) ) 1 v t ] Ψ n u m ( r , t ; r s , t s = 0 ) = 1 4 π δ ( r r s ) δ ( t ) .
δ T ( t ) T 0 ( t ) = T ( t ) T 0 ( t ) T 0 ( t ) ,
δ T n u m ( t ) T 0 ( t ) = T n u m ( t ) T 0 ( t ) T 0 ( t ) .
χ 2 = t m i n t m a x ( δ T ( t ) T 0 ( t ) δ T n u m ( t ) T 0 ( t ) ) 2 dt ,
ϵ Δ μ s = Δ μ s Δ μ s , f i t Δ μ s .

Metrics