Abstract

The rapid development in the field of optical coherence tomography has demanded increasingly sophisticated numerical models to enable the interpretation of image data and extract quantitative results. We use a matrix formulation of Fresnel’s equations for multilayered media to extract layer-dependent thickness and refractive index directly from Fourier domain optical coherence tomography spectrograms. An eigenanalysis spectral decomposition approach is used to constrain the least squares fitting algorithm, avoiding the need for initial estimates of the parameter values. We demonstrate this novel quantitative analysis approach by using a multilayered phantom and show good agreement with the known layer parameter values. This approach introduces a powerful tool for the analysis of layer-dependent optical properties that could have an important role in the differentiation of healthy and diseased tissue.

© 2006 U.S. Government

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evaluation technique," Opt. Lett. 12, 158-l60 (1987).
    [CrossRef] [PubMed]
  3. E. Swanson, J. Izatt, M. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
    [CrossRef] [PubMed]
  4. N. Nassif, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
    [CrossRef] [PubMed]
  5. L. L. Otis, B. W. Colston, Jr., M. J. Everett, and H. Nathel, "Dental optical coherence tomography: a comparison of two in vitro systems," Dentomaxillofac. Radiol. 29, 85-89 (2000).
    [CrossRef] [PubMed]
  6. S. A. Boppart, "Optical coherence tomography: technology and applications for neuroimaging," Psychophysiology 40, 529-541 (2003).
    [CrossRef] [PubMed]
  7. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997).
    [CrossRef] [PubMed]
  8. G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  9. J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
    [CrossRef] [PubMed]
  10. Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004).
    [CrossRef] [PubMed]
  11. J. P. Dunkers, M. T. Cicerone, and N. R. Washburn, "Collinear optical coherence and confocal microscopies for tissue engineering," Opt. Express 11, 3074-3079 (2003).
    [CrossRef] [PubMed]
  12. C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1116 (2004).
    [CrossRef] [PubMed]
  13. Y. Yang, R. K. Wang, E. Guyot, A. E. Haj, and A. Dubois, "Application of optical coherence tomography for tissue engineering," in Proc. SPIE 5690, 18-23 (2005).
    [CrossRef]
  14. E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 16, 1131-1137 (2005).
    [CrossRef]
  15. J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999).
    [CrossRef]
  16. J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
    [CrossRef]
  17. P. H. Tomlins and R. K. Wang, "Theory, developments and applications of optical coherence tomography," J. Phys. D 38, 2519-2535 (2005).
    [CrossRef]
  18. J. M. Schmitt, A. KnüttelM. Yadlowsky, and M. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
    [CrossRef] [PubMed]
  19. R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatters," J. Mod. Opt. 47, 103-120 (2000).
  20. L. Thrane, H. T. Yura, and P. E. Andersen, "Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle," J. Opt. Soc. Am. A 17, 484-490 (2000).
    [CrossRef]
  21. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. R. Hansen, "Determination of optical scattering properties of highly-scattering media in optical coherence tomography images," Opt. Express 12, 249-259 (2004).
    [CrossRef] [PubMed]
  22. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, "Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle," Opt. Express 10, 397-404 (2002).
    [PubMed]
  23. H. Ding, J. Q. Lu, K. M. Jacobs, and X.-H. Hu, "Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557nm," J. Opt. Soc. Am. A 22, 1151-1157 (2005).
    [CrossRef]
  24. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258-2260 (1995).
    [CrossRef] [PubMed]
  25. A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83-92 (2000).
    [CrossRef] [PubMed]
  26. R. Wang and J. Elder, "Propylene glycol as a contrasting medium for optical coherence tomography to image gastrointestinal tissues," Lasers Surg. Med. 30, 201-208 (2002).
    [CrossRef] [PubMed]
  27. O. Bruno and J. Chaubell, "One-dimensional inverse scattering problem for optical coherence tomography," Inverse Probl. 21, 499-524 (2005).
    [CrossRef]
  28. P. H. Tomlins and R. K. Wang, "The potential of optical coherence tomography for geometric analysis and refractive index measurement of three dimensional structures," in Optical Fibre Measurement Conference (National Physical Laboratory, 2005), Vol. 7, pp. 129-133.
  29. G. K. Smyth, "Employing symmetry constraints for improved frequency estimation by eigenanalysis methods," Technometrics 42, 277-289 (2000).
    [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  31. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  32. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  33. M. Zhen-He, R. K. Wang, Z. Fan, and Y. Jian-Quan, "Spectral optical coherence tomography using two-phase shifting method," Chin. Phys. Lett. 22, 1909-1912 (2005).
    [CrossRef]
  34. P. H. Tomlins and R. K. Wang, "Layer dependent refractive index measurement by Fourier domain optical coherence tomography," in Proc. SPIE 6079183-188 (2006).
  35. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
    [CrossRef]
  36. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  37. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  38. A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, 1985).
  39. G. K. Smyth and D. M. Hawkins, "Robust frequency estimation using elemental sets," J. Comput. Graph. Stat. 28, 659-662 (1997).
  40. R. Prony, "Essai éxperimental et analytique," J. Ec. Polytech. (Paris) 2, 24-76 (1795).
  41. http://www.statsci.org/s/pronyfre.html.

2006 (1)

P. H. Tomlins and R. K. Wang, "Layer dependent refractive index measurement by Fourier domain optical coherence tomography," in Proc. SPIE 6079183-188 (2006).

2005 (6)

M. Zhen-He, R. K. Wang, Z. Fan, and Y. Jian-Quan, "Spectral optical coherence tomography using two-phase shifting method," Chin. Phys. Lett. 22, 1909-1912 (2005).
[CrossRef]

H. Ding, J. Q. Lu, K. M. Jacobs, and X.-H. Hu, "Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557nm," J. Opt. Soc. Am. A 22, 1151-1157 (2005).
[CrossRef]

O. Bruno and J. Chaubell, "One-dimensional inverse scattering problem for optical coherence tomography," Inverse Probl. 21, 499-524 (2005).
[CrossRef]

Y. Yang, R. K. Wang, E. Guyot, A. E. Haj, and A. Dubois, "Application of optical coherence tomography for tissue engineering," in Proc. SPIE 5690, 18-23 (2005).
[CrossRef]

E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 16, 1131-1137 (2005).
[CrossRef]

P. H. Tomlins and R. K. Wang, "Theory, developments and applications of optical coherence tomography," J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

2004 (5)

C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1116 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004).
[CrossRef] [PubMed]

D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. R. Hansen, "Determination of optical scattering properties of highly-scattering media in optical coherence tomography images," Opt. Express 12, 249-259 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (3)

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, "Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle," Opt. Express 10, 397-404 (2002).
[PubMed]

R. Wang and J. Elder, "Propylene glycol as a contrasting medium for optical coherence tomography to image gastrointestinal tissues," Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

2001 (1)

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
[CrossRef]

2000 (5)

A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83-92 (2000).
[CrossRef] [PubMed]

G. K. Smyth, "Employing symmetry constraints for improved frequency estimation by eigenanalysis methods," Technometrics 42, 277-289 (2000).
[CrossRef]

L. L. Otis, B. W. Colston, Jr., M. J. Everett, and H. Nathel, "Dental optical coherence tomography: a comparison of two in vitro systems," Dentomaxillofac. Radiol. 29, 85-89 (2000).
[CrossRef] [PubMed]

R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatters," J. Mod. Opt. 47, 103-120 (2000).

L. Thrane, H. T. Yura, and P. E. Andersen, "Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle," J. Opt. Soc. Am. A 17, 484-490 (2000).
[CrossRef]

1999 (1)

J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999).
[CrossRef]

1997 (4)

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
[CrossRef]

G. K. Smyth and D. M. Hawkins, "Robust frequency estimation using elemental sets," J. Comput. Graph. Stat. 28, 659-662 (1997).

1995 (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258-2260 (1995).
[CrossRef] [PubMed]

1994 (1)

J. M. Schmitt, A. KnüttelM. Yadlowsky, and M. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1987 (1)

1795 (1)

R. Prony, "Essai éxperimental et analytique," J. Ec. Polytech. (Paris) 2, 24-76 (1795).

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Alarousu, E.

E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 16, 1131-1137 (2005).
[CrossRef]

Andersen, C. B.

Andersen, P. E.

Andersson-Engels, S.

Boehlau-Godau, M.

A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83-92 (2000).
[CrossRef] [PubMed]

Boppart, S.

G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Boppart, S. A.

S. A. Boppart, "Optical coherence tomography: technology and applications for neuroimaging," Psychophysiology 40, 529-541 (2003).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Bouma, B.

N. Nassif, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999).
[CrossRef]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
[CrossRef]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258-2260 (1995).
[CrossRef] [PubMed]

Brezinski, M.

G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Brezinski, M. E.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258-2260 (1995).
[CrossRef] [PubMed]

Bruno, O.

O. Bruno and J. Chaubell, "One-dimensional inverse scattering problem for optical coherence tomography," Inverse Probl. 21, 499-524 (2005).
[CrossRef]

Carr, S.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chaubell, J.

O. Bruno and J. Chaubell, "One-dimensional inverse scattering problem for optical coherence tomography," Inverse Probl. 21, 499-524 (2005).
[CrossRef]

Chen, T.

Cicerone, M. T.

Colston, B. W.

L. L. Otis, B. W. Colston, Jr., M. J. Everett, and H. Nathel, "Dental optical coherence tomography: a comparison of two in vitro systems," Dentomaxillofac. Radiol. 29, 85-89 (2000).
[CrossRef] [PubMed]

Davies, D. E. N.

de Boer, J.

de Boer, J. F.

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

Ding, H.

Dubois, A.

Y. Yang, R. K. Wang, E. Guyot, A. E. Haj, and A. Dubois, "Application of optical coherence tomography for tissue engineering," in Proc. SPIE 5690, 18-23 (2005).
[CrossRef]

Dunkers, J. P.

J. P. Dunkers, M. T. Cicerone, and N. R. Washburn, "Collinear optical coherence and confocal microscopies for tissue engineering," Opt. Express 11, 3074-3079 (2003).
[CrossRef] [PubMed]

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
[CrossRef]

J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999).
[CrossRef]

Dunnill, P.

C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1116 (2004).
[CrossRef] [PubMed]

Eckhaus, M.

J. M. Schmitt, A. KnüttelM. Yadlowsky, and M. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Elder, J.

R. Wang and J. Elder, "Propylene glycol as a contrasting medium for optical coherence tomography to image gastrointestinal tissues," Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef] [PubMed]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Everett, M. J.

L. L. Otis, B. W. Colston, Jr., M. J. Everett, and H. Nathel, "Dental optical coherence tomography: a comparison of two in vitro systems," Dentomaxillofac. Radiol. 29, 85-89 (2000).
[CrossRef] [PubMed]

Fan, Z.

M. Zhen-He, R. K. Wang, Z. Fan, and Y. Jian-Quan, "Spectral optical coherence tomography using two-phase shifting method," Chin. Phys. Lett. 22, 1909-1912 (2005).
[CrossRef]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Flynn, K. M.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
[CrossRef]

J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999).
[CrossRef]

Frosz, M. H.

Fujimoto, J.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

E. Swanson, J. Izatt, M. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Guyot, E.

Y. Yang, R. K. Wang, E. Guyot, A. E. Haj, and A. Dubois, "Application of optical coherence tomography for tissue engineering," in Proc. SPIE 5690, 18-23 (2005).
[CrossRef]

Haj, A. E.

Y. Yang, R. K. Wang, E. Guyot, A. E. Haj, and A. Dubois, "Application of optical coherence tomography for tissue engineering," in Proc. SPIE 5690, 18-23 (2005).
[CrossRef]

Hansen, P. R.

Hawkins, D. M.

G. K. Smyth and D. M. Hawkins, "Robust frequency estimation using elemental sets," J. Comput. Graph. Stat. 28, 659-662 (1997).

He, Y.

Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004).
[CrossRef] [PubMed]

Hee, M.

E. Swanson, J. Izatt, M. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hu, X.-H.

Huang, D.

E. Swanson, J. Izatt, M. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Izatt, J.

Izatt, J. A.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Jacobs, K. M.

Jian-Quan, Y.

M. Zhen-He, R. K. Wang, Z. Fan, and Y. Jian-Quan, "Spectral optical coherence tomography using two-phase shifting method," Chin. Phys. Lett. 22, 1909-1912 (2005).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Knuttel, A.

A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83-92 (2000).
[CrossRef] [PubMed]

Knüttel, A.

J. M. Schmitt, A. KnüttelM. Yadlowsky, and M. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Krehut, L.

E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 16, 1131-1137 (2005).
[CrossRef]

Levitz, D.

Lin, C.

E. Swanson, J. Izatt, M. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lu, J. Q.

Markusen, J. F.

C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1116 (2004).
[CrossRef] [PubMed]

Mason, C.

C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1116 (2004).
[CrossRef] [PubMed]

Myllyla, R.

E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 16, 1131-1137 (2005).
[CrossRef]

Nasr, M. B.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Nassif, N.

Nathel, H.

L. L. Otis, B. W. Colston, Jr., M. J. Everett, and H. Nathel, "Dental optical coherence tomography: a comparison of two in vitro systems," Dentomaxillofac. Radiol. 29, 85-89 (2000).
[CrossRef] [PubMed]

Neel, V.

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

Otis, L. L.

L. L. Otis, B. W. Colston, Jr., M. J. Everett, and H. Nathel, "Dental optical coherence tomography: a comparison of two in vitro systems," Dentomaxillofac. Radiol. 29, 85-89 (2000).
[CrossRef] [PubMed]

Park, B.

Park, B. H.

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

Parnas, R. S.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
[CrossRef]

J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999).
[CrossRef]

Peterson, R. C.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
[CrossRef]

J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999).
[CrossRef]

Phelan, F. R.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
[CrossRef]

Pierce, M.

Pierce, M. C.

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

Pitris, C.

G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Pittius, D.

Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004).
[CrossRef] [PubMed]

Prony, R.

R. Prony, "Essai éxperimental et analytique," J. Ec. Polytech. (Paris) 2, 24-76 (1795).

Prykari, T.

E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 16, 1131-1137 (2005).
[CrossRef]

Puliafito, C.

E. Swanson, J. Izatt, M. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Radhakrishnan, S.

Rollins, A. M.

Saleh, B. E. A.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Saunders, D. P.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, A. KnüttelM. Yadlowsky, and M. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Schuman, J.

E. Swanson, J. Izatt, M. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sergienko, A. V.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Smyth, G. K.

G. K. Smyth, "Employing symmetry constraints for improved frequency estimation by eigenanalysis methods," Technometrics 42, 277-289 (2000).
[CrossRef]

G. K. Smyth and D. M. Hawkins, "Robust frequency estimation using elemental sets," J. Comput. Graph. Stat. 28, 659-662 (1997).

Southern, J.

G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Southern, J. F.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258-2260 (1995).
[CrossRef] [PubMed]

Spiteri, M.

Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004).
[CrossRef] [PubMed]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Strasswimmer, J.

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

Swanson, E.

E. Swanson, J. Izatt, M. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swartling, J.

Tearney, G.

N. Nassif, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Tearney, G. J.

Teich, M. C.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Thrane, L.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, "Layer dependent refractive index measurement by Fourier domain optical coherence tomography," in Proc. SPIE 6079183-188 (2006).

P. H. Tomlins and R. K. Wang, "Theory, developments and applications of optical coherence tomography," J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

P. H. Tomlins and R. K. Wang, "The potential of optical coherence tomography for geometric analysis and refractive index measurement of three dimensional structures," in Optical Fibre Measurement Conference (National Physical Laboratory, 2005), Vol. 7, pp. 129-133.

Town, M. A.

C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1116 (2004).
[CrossRef] [PubMed]

Valanciunaite, J.

Wang, R.

R. Wang and J. Elder, "Propylene glycol as a contrasting medium for optical coherence tomography to image gastrointestinal tissues," Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef] [PubMed]

Wang, R. K.

P. H. Tomlins and R. K. Wang, "Layer dependent refractive index measurement by Fourier domain optical coherence tomography," in Proc. SPIE 6079183-188 (2006).

P. H. Tomlins and R. K. Wang, "Theory, developments and applications of optical coherence tomography," J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Y. Yang, R. K. Wang, E. Guyot, A. E. Haj, and A. Dubois, "Application of optical coherence tomography for tissue engineering," in Proc. SPIE 5690, 18-23 (2005).
[CrossRef]

M. Zhen-He, R. K. Wang, Z. Fan, and Y. Jian-Quan, "Spectral optical coherence tomography using two-phase shifting method," Chin. Phys. Lett. 22, 1909-1912 (2005).
[CrossRef]

C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1116 (2004).
[CrossRef] [PubMed]

Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004).
[CrossRef] [PubMed]

R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatters," J. Mod. Opt. 47, 103-120 (2000).

P. H. Tomlins and R. K. Wang, "The potential of optical coherence tomography for geometric analysis and refractive index measurement of three dimensional structures," in Optical Fibre Measurement Conference (National Physical Laboratory, 2005), Vol. 7, pp. 129-133.

Washburn, N. R.

Westphal, V.

Whiteman, S.

Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Yadlowsky, M.

J. M. Schmitt, A. KnüttelM. Yadlowsky, and M. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, R. K. Wang, E. Guyot, A. E. Haj, and A. Dubois, "Application of optical coherence tomography for tissue engineering," in Proc. SPIE 5690, 18-23 (2005).
[CrossRef]

Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, 1985).

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Youngquist, R. C.

Yun, S.

Yura, H. T.

Zhen-He, M.

M. Zhen-He, R. K. Wang, Z. Fan, and Y. Jian-Quan, "Spectral optical coherence tomography using two-phase shifting method," Chin. Phys. Lett. 22, 1909-1912 (2005).
[CrossRef]

Zimba, C. G.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
[CrossRef]

J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999).
[CrossRef]

Chin. Phys. Lett. (1)

M. Zhen-He, R. K. Wang, Z. Fan, and Y. Jian-Quan, "Spectral optical coherence tomography using two-phase shifting method," Chin. Phys. Lett. 22, 1909-1912 (2005).
[CrossRef]

Composites, Part A (1)

J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, "Optical coherence tomography of glass reinforced polymer composites," Composites, Part A 30, 139-l45 (1999).
[CrossRef]

Dentomaxillofac. Radiol. (1)

L. L. Otis, B. W. Colston, Jr., M. J. Everett, and H. Nathel, "Dental optical coherence tomography: a comparison of two in vitro systems," Dentomaxillofac. Radiol. 29, 85-89 (2000).
[CrossRef] [PubMed]

Inverse Probl. (1)

O. Bruno and J. Chaubell, "One-dimensional inverse scattering problem for optical coherence tomography," Inverse Probl. 21, 499-524 (2005).
[CrossRef]

J. Biomed. Opt. (2)

A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83-92 (2000).
[CrossRef] [PubMed]

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

J. Comput. Graph. Stat. (1)

G. K. Smyth and D. M. Hawkins, "Robust frequency estimation using elemental sets," J. Comput. Graph. Stat. 28, 659-662 (1997).

J. Ec. Polytech. (Paris) (1)

R. Prony, "Essai éxperimental et analytique," J. Ec. Polytech. (Paris) 2, 24-76 (1795).

J. Mod. Opt. (1)

R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatters," J. Mod. Opt. 47, 103-120 (2000).

J. Opt. Soc. Am. A (2)

J. Phys. D (1)

P. H. Tomlins and R. K. Wang, "Theory, developments and applications of optical coherence tomography," J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Lasers Surg. Med. (1)

R. Wang and J. Elder, "Propylene glycol as a contrasting medium for optical coherence tomography to image gastrointestinal tissues," Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 16, 1131-1137 (2005).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Med. Biol. (3)

C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1116 (2004).
[CrossRef] [PubMed]

Y. Yang, S. Whiteman, Y. He, D. Pittius, R. K. Wang, and M. Spiteri, "Use of OCT in delineating airway microstructures: comparison of OCT images with histopathologies," Phys. Med. Biol. 49, 1247-1256 (2004).
[CrossRef] [PubMed]

J. M. Schmitt, A. KnüttelM. Yadlowsky, and M. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Phys. Rev. A (1)

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Polym. Compos. (1)

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Saunders, R. C. Peterson, and R. S. Parnas, "The prediction of permeability for an epoxy/e-glass composite using optical coherence tomography," Polym. Compos. 22, 803-814 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Proc. SPIE (2)

Y. Yang, R. K. Wang, E. Guyot, A. E. Haj, and A. Dubois, "Application of optical coherence tomography for tissue engineering," in Proc. SPIE 5690, 18-23 (2005).
[CrossRef]

P. H. Tomlins and R. K. Wang, "Layer dependent refractive index measurement by Fourier domain optical coherence tomography," in Proc. SPIE 6079183-188 (2006).

Psychophysiology (1)

S. A. Boppart, "Optical coherence tomography: technology and applications for neuroimaging," Psychophysiology 40, 529-541 (2003).
[CrossRef] [PubMed]

Science (2)

G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Technometrics (1)

G. K. Smyth, "Employing symmetry constraints for improved frequency estimation by eigenanalysis methods," Technometrics 42, 277-289 (2000).
[CrossRef]

Other (6)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

P. H. Tomlins and R. K. Wang, "The potential of optical coherence tomography for geometric analysis and refractive index measurement of three dimensional structures," in Optical Fibre Measurement Conference (National Physical Laboratory, 2005), Vol. 7, pp. 129-133.

A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, 1985).

http://www.statsci.org/s/pronyfre.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Electric field propagating through adjacent lossy layers.

Fig. 2
Fig. 2

Matrix and summation model simulation for multiple transparent layers. Layer thickness is 300 μ m , with alternating refractive indices of 1 and 1.5.

Fig. 3
Fig. 3

(a) Summation model compared with a single axial scan of a microscope slide of physical thickness 140 μ m and refractive index 1.515. (b) The matrix model comparison introduces a further peak around 0.8 mm that corresponds to a multiple reflection. The theory shows excellent agreement with the measured data.

Fig. 4
Fig. 4

FD-OCT system used to measure the simple artifact. The source center wavelength is 840 nm , with a bandwidth of 40 nm .

Fig. 5
Fig. 5

Cross section of a simple three-layer calibration artifact.

Fig. 6
Fig. 6

Single axial scan measurement of calibration artifact. The matrix model simulation of the artifact is also shown for comparison. There is excellent agreement between the model and the measurement peak positions; however, the front and back surface reflections show considerable discrepancy in amplitude.

Fig. 7
Fig. 7

Sample arm focusing optics.

Fig. 8
Fig. 8

Measured and theoretical capture fractions for different mirror offsets from the beam focus in our OCT system: (a) large depth of field, (b) small depth of field.

Fig. 9
Fig. 9

Comparison between the reference artifact measurement and the capture-fraction-adjusted simulation shows excellent agreement.

Fig. 10
Fig. 10

Comparison of single axial scan measurement of (a) phantom and (b) reference artifact.

Fig. 11
Fig. 11

Average over 20 axial scans of region of interest detailing scattered light from within the dental composite layer. An exponential curve is fitted to the data to estimate the layer attenuation.

Fig. 12
Fig. 12

FD-OCT simulations of (a) lossy and (b) lossless phantoms corresponding to the measured artifacts.

Fig. 13
Fig. 13

FD-OCT spectrograms of calibration artifact decomposed into component spectra corresponding to each interface: (a) reference artifact, (b) front interface component, (c) second interface, (d) third interface, (e) back interface.

Fig. 14
Fig. 14

Procedural flow diagram outlining measurement and analysis process for extracting the optical properties of a multilayered structure.

Tables (3)

Tables Icon

Table 1 Optical and Dimensional Properties of Transparent Calibration Artifact

Tables Icon

Table 2 Layer Optical Thicknesses for Phantom Measured by Smyth’s Spectral Decomposition Method

Tables Icon

Table 3 Fitted Refractive Index and Corresponding Physical Thickness Results for the Three-Layer Phantom

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

r = n 2 n 1 n 2 + n 1 ,
t = 2 n 1 n 2 + n 1 .
E ( z ) = E ( z ) exp ( i ω t ) .
E ( z ) = F exp ( i k z ) + B exp ( i k z ) ,
H ( z ) = [ f exp ( i k z ) + b exp ( i k z ) ] exp ( i ω t ) .
× E = μ t H .
H = i ω μ × E .
H = i ω μ y ̂ z E ( z ) .
E j ( 0 ) = E j + 1 ( 0 ) ,
H j ( 0 ) = H j + 1 ( 0 ) .
z E j ( 0 ) = z E j + 1 ( 0 ) .
E ( z ) = F ( z ) exp ( i k z ) + B ( z ) exp ( i k z ) .
E ( z ) = { F exp [ α ( z + d ) i k z ] + B exp ( α z + i k z ) for z < 0 F exp [ α ( z ) i k z ] + B exp [ α ( z d ) + i k z ] for 0 < z .
F j exp ( α j d j ) + B j = F j + 1 + B j + 1 exp ( α j + 1 d j + 1 ) ,
Λ j F j exp ( α j d j ) + Λ j B j = Λ j + 1 F j + 1 + Λ j + 1 B j + 1 exp ( α j d j + 1 ) ,
D j Φ j = D j + 1 Φ j + 1 ,
D j = [ 1 1 Λ j Λ j ] ,
Φ j = ( F j exp ( α j d j ) B j ) ,
Φ j + 1 = ( F j + 1 B j + 1 exp ( α j + 1 d j + 1 ) ) .
Φ j = D j 1 D j + 1 Φ j + 1 .
P j = [ exp ( Λ j d j ) 0 0 exp ( Λ j d j ) ] .
M = [ M 11 M 12 M 21 M 22 ] = D 0 1 ( j = 1 N D j P j D j 1 ) D N + 1 .
H = B 0 F 0 .
H = M 21 M 11 .
I ( ω ) = 1 4 S ( ω ) ( 1 + 2 Re { H ( ω ) exp [ i ϕ ( ω ) ] } + H ( ω ) 2 ) .
ϕ ( ω ) = 2 ω n air Δ z c .
k j ( ω ) = n j ω c ,
I ps ( ω ) = 1 4 S ( ω ) [ 1 + 2 Re ( H ( ω ) exp { i [ ϕ ( w ) + π 2 ] } ) + H ( ω ) 2 ] .
I ( ω ) I ps ( ω ) = S ( ω ) Re { H ( ω ) exp [ i ϕ ( ω ) ] } .
H ( ω ) = j = 1 N r j exp ( i 2 ω c m 1 j n m d m ) .
Γ ( z ) = E 0 E 1 * d x d y 2 ,
E ( x , y ) = 2 π Im ( π λ q ) exp ( i π λ x 2 + y 2 q ) .
q 0 = i π w 00 2 λ ,
q ( z ) = q 0 η ( z ) + ( f 0 z 0 ) [ z 0 f 0 + z ( f 0 z 0 ) ] η ( z ) q 0 ( f 0 z ) ,
η ( z ) = ( f 0 z ) ( f 0 z 0 ) f 0 2 2 .
Γ ( z ) = Q S * i π R T * 2 ,
Q = i 2 π 1 w 00 ,
R = i w 00 2 ,
S = 2 π Im [ π λ q ( z ) ] ,
T = π λ 1 q ( z ) .
Γ j = Γ [ z f + ( z s + ι = 0 j d ι n ι ) ] .
P j = [ exp ( Λ j d j ) 0 0 Γ j Γ j 1 exp ( Λ j d j ) ] .
M = [ 1 0 0 Γ 0 ] D 0 1 ( j = 1 N D j P j D j 1 ) D N + 1 .
Z j = c 1 4 π T j N Δ ν ,

Metrics