Abstract

It is shown that a lossless first-order optical system whose real symplectic ray transformation matrix can be diagonalized and has only unimodular eigenvalues is similar to a separable fractional Fourier transformer in the sense that the ray transformation matrices of the unimodular system and the separable fractional Fourier transformer are related by means of a similarity transformation. Moreover, it is shown that the system that performs this similarity transformation is itself a lossless first-order optical system. Based on the fact that Hermite–Gauss functions are the eigenfunctions of a fractional Fourier transformer, the eigenfunctions of a unimodular first-order optical system can be formulated and belong to the recently introduced class of orthonormal Hermite–Gaussian-type modes. Two decompositions of a unimodular first-order optical system are considered, and one of them is used to derive an easy optical realization in more detail.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (65)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription