Abstract

A method to determine the limiting resolution of a microscanning imager is proposed. Specifically, both the sample-scene phase effects and aliasing effects due to microscanning are modeled in this method by combining the pixel transfer function and the squeeze modulation transfer function. Further, this model is used to calculate the amount of improvement from typical microscanning modes to the limiting resolution of the imager focusing on various blur factors. Analytical results show that the limiting resolution of the microscanning imager is closely related to microscanning modes. The amount of improvement from different microscanning modes to the limiting resolution is different and is closely associated with the fill factor and the blur factors. The conclusion obtained will be helpful in choosing the optimum microscanning mode according to the fill factor of the detector and system blur factors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Krapels, R. Driggers, R. Vollmerhausen, and C. Halford, "Performance comparison of rectangular (4-point) and diagonal (2-point) dither," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XI, G. C. Holst, ed., Proc. SPIE 4030, 151-169 (2000).
  2. L. de Luca and G. Cardone, "Modulation transfer function cascade model for a sampled IR imaging system," Appl. Opt. 13, 1659-1664 (1991).
    [CrossRef]
  3. J. Fortin and P. Chevrette, "Realization of a fast microscanning device for infrared focal plane arrays," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing VII, G. C. Holst, ed., Proc. SPIE 2743, 185-196 (1996).
  4. X.-R. Wang, J.-Q. Zhang, and H.-H. Chang, "Assessment of the performance of staring infrared imaging array based on micro-scanning modes," Int. J. Infrared Millim. Waves 25, 905-916 (2004).
    [CrossRef]
  5. S. K. Park and R. Hazra, "Aliasing as noise: a quantitative and qualitative assessment," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IV, G. C. Holst, ed., Proc. SPIE 1969, 54-65 (1993).
  6. X.-R. Wang, J.-Q. Zhang, Z.-X. Feng, and H.-H. Chang, "Relationship between microscanned image quality and fill factor of detectors," Appl. Opt. 44, 4470-4474 (2005).
    [CrossRef] [PubMed]
  7. E. A. Watson, R. A. Muse, and F. P. Blommel, "Aliasing and blurring in microscanned imagery," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE 1689, 242-250 (1992).
  8. O. Hadar and G. D. Boreman, "Over-sampling requirements for pixelated-imager systems," Opt. Eng. (Bellingham) 38, 782-785 (1999).
    [CrossRef]
  9. K. M. Hock, "Effect of over-sampling in pixel arrays," Opt. Eng. (Bellingham) 34, 1281-1288 (1995).
    [CrossRef]
  10. O. H. Shade, "Image reproduction by a line raster process," in Perception of Displayed Information, L.C.Biberman, ed. (Plenum, 1973), pp. 233-278.
  11. R. G. Driggers, R. Vollmerhausen, and B. O. Kande, "Sampled imaging sensor design using the MTF squeeze model to characterize spurious response," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing X, G. C. Holst, ed., Proc. SPIE 3701, 61-73 (1999).
  12. N. Devitt, R. G. Driggers, R. Vollmerhausen, and T. Maurer, "Impact of display artifacts on target identification," in Infrared and Passive Millimeter-Wave Imaging Systems: Design, Analysis, Modeling, and Testing, IV, G. C. Holst, R. Appleby, and D. A. Wikner, eds., Proc. SPIE 4719, 24-33 (2002).

2005 (1)

2004 (1)

X.-R. Wang, J.-Q. Zhang, and H.-H. Chang, "Assessment of the performance of staring infrared imaging array based on micro-scanning modes," Int. J. Infrared Millim. Waves 25, 905-916 (2004).
[CrossRef]

1999 (1)

O. Hadar and G. D. Boreman, "Over-sampling requirements for pixelated-imager systems," Opt. Eng. (Bellingham) 38, 782-785 (1999).
[CrossRef]

1995 (1)

K. M. Hock, "Effect of over-sampling in pixel arrays," Opt. Eng. (Bellingham) 34, 1281-1288 (1995).
[CrossRef]

1991 (1)

L. de Luca and G. Cardone, "Modulation transfer function cascade model for a sampled IR imaging system," Appl. Opt. 13, 1659-1664 (1991).
[CrossRef]

Blommel, F. P.

E. A. Watson, R. A. Muse, and F. P. Blommel, "Aliasing and blurring in microscanned imagery," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE 1689, 242-250 (1992).

Boreman, G. D.

O. Hadar and G. D. Boreman, "Over-sampling requirements for pixelated-imager systems," Opt. Eng. (Bellingham) 38, 782-785 (1999).
[CrossRef]

Cardone, G.

L. de Luca and G. Cardone, "Modulation transfer function cascade model for a sampled IR imaging system," Appl. Opt. 13, 1659-1664 (1991).
[CrossRef]

Chang, H.-H.

X.-R. Wang, J.-Q. Zhang, Z.-X. Feng, and H.-H. Chang, "Relationship between microscanned image quality and fill factor of detectors," Appl. Opt. 44, 4470-4474 (2005).
[CrossRef] [PubMed]

X.-R. Wang, J.-Q. Zhang, and H.-H. Chang, "Assessment of the performance of staring infrared imaging array based on micro-scanning modes," Int. J. Infrared Millim. Waves 25, 905-916 (2004).
[CrossRef]

Chevrette, P.

J. Fortin and P. Chevrette, "Realization of a fast microscanning device for infrared focal plane arrays," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing VII, G. C. Holst, ed., Proc. SPIE 2743, 185-196 (1996).

de Luca, L.

L. de Luca and G. Cardone, "Modulation transfer function cascade model for a sampled IR imaging system," Appl. Opt. 13, 1659-1664 (1991).
[CrossRef]

Devitt, N.

N. Devitt, R. G. Driggers, R. Vollmerhausen, and T. Maurer, "Impact of display artifacts on target identification," in Infrared and Passive Millimeter-Wave Imaging Systems: Design, Analysis, Modeling, and Testing, IV, G. C. Holst, R. Appleby, and D. A. Wikner, eds., Proc. SPIE 4719, 24-33 (2002).

Driggers, R.

K. Krapels, R. Driggers, R. Vollmerhausen, and C. Halford, "Performance comparison of rectangular (4-point) and diagonal (2-point) dither," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XI, G. C. Holst, ed., Proc. SPIE 4030, 151-169 (2000).

Driggers, R. G.

N. Devitt, R. G. Driggers, R. Vollmerhausen, and T. Maurer, "Impact of display artifacts on target identification," in Infrared and Passive Millimeter-Wave Imaging Systems: Design, Analysis, Modeling, and Testing, IV, G. C. Holst, R. Appleby, and D. A. Wikner, eds., Proc. SPIE 4719, 24-33 (2002).

R. G. Driggers, R. Vollmerhausen, and B. O. Kande, "Sampled imaging sensor design using the MTF squeeze model to characterize spurious response," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing X, G. C. Holst, ed., Proc. SPIE 3701, 61-73 (1999).

Feng, Z.-X.

Fortin, J.

J. Fortin and P. Chevrette, "Realization of a fast microscanning device for infrared focal plane arrays," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing VII, G. C. Holst, ed., Proc. SPIE 2743, 185-196 (1996).

Hadar, O.

O. Hadar and G. D. Boreman, "Over-sampling requirements for pixelated-imager systems," Opt. Eng. (Bellingham) 38, 782-785 (1999).
[CrossRef]

Halford, C.

K. Krapels, R. Driggers, R. Vollmerhausen, and C. Halford, "Performance comparison of rectangular (4-point) and diagonal (2-point) dither," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XI, G. C. Holst, ed., Proc. SPIE 4030, 151-169 (2000).

Hazra, R.

S. K. Park and R. Hazra, "Aliasing as noise: a quantitative and qualitative assessment," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IV, G. C. Holst, ed., Proc. SPIE 1969, 54-65 (1993).

Hock, K. M.

K. M. Hock, "Effect of over-sampling in pixel arrays," Opt. Eng. (Bellingham) 34, 1281-1288 (1995).
[CrossRef]

Kande, B. O.

R. G. Driggers, R. Vollmerhausen, and B. O. Kande, "Sampled imaging sensor design using the MTF squeeze model to characterize spurious response," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing X, G. C. Holst, ed., Proc. SPIE 3701, 61-73 (1999).

Krapels, K.

K. Krapels, R. Driggers, R. Vollmerhausen, and C. Halford, "Performance comparison of rectangular (4-point) and diagonal (2-point) dither," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XI, G. C. Holst, ed., Proc. SPIE 4030, 151-169 (2000).

Maurer, T.

N. Devitt, R. G. Driggers, R. Vollmerhausen, and T. Maurer, "Impact of display artifacts on target identification," in Infrared and Passive Millimeter-Wave Imaging Systems: Design, Analysis, Modeling, and Testing, IV, G. C. Holst, R. Appleby, and D. A. Wikner, eds., Proc. SPIE 4719, 24-33 (2002).

Muse, R. A.

E. A. Watson, R. A. Muse, and F. P. Blommel, "Aliasing and blurring in microscanned imagery," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE 1689, 242-250 (1992).

Park, S. K.

S. K. Park and R. Hazra, "Aliasing as noise: a quantitative and qualitative assessment," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IV, G. C. Holst, ed., Proc. SPIE 1969, 54-65 (1993).

Shade, O. H.

O. H. Shade, "Image reproduction by a line raster process," in Perception of Displayed Information, L.C.Biberman, ed. (Plenum, 1973), pp. 233-278.

Vollmerhausen, R.

K. Krapels, R. Driggers, R. Vollmerhausen, and C. Halford, "Performance comparison of rectangular (4-point) and diagonal (2-point) dither," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XI, G. C. Holst, ed., Proc. SPIE 4030, 151-169 (2000).

R. G. Driggers, R. Vollmerhausen, and B. O. Kande, "Sampled imaging sensor design using the MTF squeeze model to characterize spurious response," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing X, G. C. Holst, ed., Proc. SPIE 3701, 61-73 (1999).

N. Devitt, R. G. Driggers, R. Vollmerhausen, and T. Maurer, "Impact of display artifacts on target identification," in Infrared and Passive Millimeter-Wave Imaging Systems: Design, Analysis, Modeling, and Testing, IV, G. C. Holst, R. Appleby, and D. A. Wikner, eds., Proc. SPIE 4719, 24-33 (2002).

Wang, X.-R.

X.-R. Wang, J.-Q. Zhang, Z.-X. Feng, and H.-H. Chang, "Relationship between microscanned image quality and fill factor of detectors," Appl. Opt. 44, 4470-4474 (2005).
[CrossRef] [PubMed]

X.-R. Wang, J.-Q. Zhang, and H.-H. Chang, "Assessment of the performance of staring infrared imaging array based on micro-scanning modes," Int. J. Infrared Millim. Waves 25, 905-916 (2004).
[CrossRef]

Watson, E. A.

E. A. Watson, R. A. Muse, and F. P. Blommel, "Aliasing and blurring in microscanned imagery," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE 1689, 242-250 (1992).

Zhang, J.-Q.

X.-R. Wang, J.-Q. Zhang, Z.-X. Feng, and H.-H. Chang, "Relationship between microscanned image quality and fill factor of detectors," Appl. Opt. 44, 4470-4474 (2005).
[CrossRef] [PubMed]

X.-R. Wang, J.-Q. Zhang, and H.-H. Chang, "Assessment of the performance of staring infrared imaging array based on micro-scanning modes," Int. J. Infrared Millim. Waves 25, 905-916 (2004).
[CrossRef]

Appl. Opt. (2)

L. de Luca and G. Cardone, "Modulation transfer function cascade model for a sampled IR imaging system," Appl. Opt. 13, 1659-1664 (1991).
[CrossRef]

X.-R. Wang, J.-Q. Zhang, Z.-X. Feng, and H.-H. Chang, "Relationship between microscanned image quality and fill factor of detectors," Appl. Opt. 44, 4470-4474 (2005).
[CrossRef] [PubMed]

Int. J. Infrared Millim. Waves (1)

X.-R. Wang, J.-Q. Zhang, and H.-H. Chang, "Assessment of the performance of staring infrared imaging array based on micro-scanning modes," Int. J. Infrared Millim. Waves 25, 905-916 (2004).
[CrossRef]

Opt. Eng. (Bellingham) (2)

O. Hadar and G. D. Boreman, "Over-sampling requirements for pixelated-imager systems," Opt. Eng. (Bellingham) 38, 782-785 (1999).
[CrossRef]

K. M. Hock, "Effect of over-sampling in pixel arrays," Opt. Eng. (Bellingham) 34, 1281-1288 (1995).
[CrossRef]

Other (7)

O. H. Shade, "Image reproduction by a line raster process," in Perception of Displayed Information, L.C.Biberman, ed. (Plenum, 1973), pp. 233-278.

R. G. Driggers, R. Vollmerhausen, and B. O. Kande, "Sampled imaging sensor design using the MTF squeeze model to characterize spurious response," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing X, G. C. Holst, ed., Proc. SPIE 3701, 61-73 (1999).

N. Devitt, R. G. Driggers, R. Vollmerhausen, and T. Maurer, "Impact of display artifacts on target identification," in Infrared and Passive Millimeter-Wave Imaging Systems: Design, Analysis, Modeling, and Testing, IV, G. C. Holst, R. Appleby, and D. A. Wikner, eds., Proc. SPIE 4719, 24-33 (2002).

S. K. Park and R. Hazra, "Aliasing as noise: a quantitative and qualitative assessment," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IV, G. C. Holst, ed., Proc. SPIE 1969, 54-65 (1993).

E. A. Watson, R. A. Muse, and F. P. Blommel, "Aliasing and blurring in microscanned imagery," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. C. Holst, ed., Proc. SPIE 1689, 242-250 (1992).

J. Fortin and P. Chevrette, "Realization of a fast microscanning device for infrared focal plane arrays," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing VII, G. C. Holst, ed., Proc. SPIE 2743, 185-196 (1996).

K. Krapels, R. Driggers, R. Vollmerhausen, and C. Halford, "Performance comparison of rectangular (4-point) and diagonal (2-point) dither," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XI, G. C. Holst, ed., Proc. SPIE 4030, 151-169 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Typical patterns corresponding to microscanning modes. (a) 2 × 2 , (b) 3 × 3 , (c) 4 × 4 microscans.

Fig. 2
Fig. 2

Amount of relative improvement of the limiting resolution of the imager with respect to nonmicroscanning for different microscanning modes ( η 1 = 0.4 , η 3 = 0.01 ) .

Fig. 3
Fig. 3

Amount of relative improvement of the limiting resolution of the imager with respect to nonmicroscanning for different microscanning modes ( η 1 = 0.4 , η 3 = 0.4 ) .

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E ( A 2 ) = 1 p p 2 p 2 A 2 d x = 1 p p 2 p 2 ( 1 p p 2 + x p 2 + x A 1 cos 2 π f x d x ) d x ,
P T F = E ( A 2 ) A 1 = sin c ( p f ) sin c ( d f ) ,
E ( A 2 ) = 1 Δ Δ 2 Δ 2 A 2 d x = 1 Δ Δ 2 Δ 2 ( 1 d d 2 + x d 2 + x A 1 cos ( 2 π f x ) d x ) d x ,
P T F = E ( A 2 ) A 1 = sin c ( Δ f ) sin c ( d f ) .
M T F ( f ) = M T F p o s t ( f ) M T F p r e ( f ) + M T F p o s t ( f ) n 0 M T F p r e ( n f s ± f ) .
S R = ( M T F p o s t ( f ) n 0 M T F p r e ( n f s ± f ) ) d f ( M T F p o s t ( f ) M T F p r e ( f ) ) d f .
S R i n - b a n d = f n f n ( M T F p o s t ( f ) n 0 M T F p r e ( n f s ± f ) ) d f ( M T F p o s t ( f ) M T F p r e ( f ) ) d f ,
S R o u t - o f - b a n d = S R S R i n - b a n d .
M T F s q u e e z e = 1 0.58 S R o u t - o f - b a n d .
0.05 = sin ( π f max d ) π f max d sin ( π Δ f max ) π Δ f max exp ( 2 ( π σ 0 f max ) 2 ) exp ( 2 ( π σ c f max ) 2 ) ,
sin ( π f max d ) π f max d sin ( π Δ f max ) π Δ f max
σ 0 = η 1 × p , d = η 2 × p ,
σ c = η 3 × p , Δ = p n ,
0.05 = sin ( η 2 π p f max ) η 2 π p f max sin ( π p f max n ) π p f max n exp ( 2 ( π η 1 p f max ) 2 ) exp ( 2 ( π η 3 p f max ) 2 ) .
0.05 η 2 π 2 ( p f max ) 2 n = sin ( η 2 π p f max ) sin ( π p f max n ) exp ( 2 ( π η 1 p f max ) 2 ) exp ( 2 ( π η 3 p f max ) 2 ) .
0.05 η 2 π 2 t 2 n = sin ( η 2 π t ) sin ( π t n ) exp ( 2 ( π η 1 t ) 2 ) exp ( 2 ( π η 3 t ) 2 ) .
f max = t p .
f max = ( 1 0.58 S R o u t - o f - b a n d ) f max ,
β = f max ( microscan ) f max ( nonmicroscan ) f max ( nonmicroscan ) = ( 1 0.58 S R o u t - o f - b a n d m i c r o s c a n ) t m i c r o s c a n p ( 1 0.58 S R o u t - o f - b a n d n o n m i c r o s c a n ) t n o n m i c r o s c a n p ( 1 0.58 S R o u t - o f - b a n d n o n m i c r o s c a n ) t n o n m i c r o s c a n p = ( 1 0.58 S R o u t - o f - b a n d m i c r o s c a n ) t m i c r o s c a n ( 1 0.58 S R o u t - o f - b a n d n o n m i c r o s c a n ) t n o n m i c r o s c a n ( 1 0.58 S R o u t - o f - b a n d n o n m i c r o s c a n ) t n o n m i c r o s c a n .

Metrics