Abstract

We present an approach to estimating the reflectance of a surface given its camera response. In this approach we first solve the general form of this problem: We calculate the set of all possible surface reflectances, called the metamer set, and then choose a member from this set. Three possibilities in choosing a single reflectance are described here. First, we assume that all reflectances are equally likely and minimize worst-case error. Second, we adopt the assumption that reflectances follow a normal probability distribution and maximize this probability. Finally, we assume that reflectances are smooth and maximize this property. The results of our experiments show that there is significant benefit from the proposed approach in terms of the accuracy of the estimation compared with that of standard estimation methods. Moreover, the present approach introduces a notion of robustness of estimates in the form of error bars.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription