Abstract

The FAST-Net ( F ree-space A ccelerator for S witching T erabit Net works) concept uses an array of wide-field-of-view imaging lenses to realize a high-density shuffle interconnect pattern across an array of smart-pixel integrated circuits. To simplify the optics we evaluated the efficiency gained in replacing spherical surfaces with aspherical surfaces by exploiting the large disparity between narrow vertical cavity surface emitting laser (VCSEL) beams and the wide field of view of the imaging optics. We then analyzed trade-offs between lens complexity and chip real estate utilization and determined that there exists an optimal numerical aperture for VCSELs that maximizes their area density. The results provide a general framework for the design of wide-field-of-view free-space interconnection systems that incorporate high-density VCSEL arrays.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, L. Yue, and M. Hibbs-Brenner, 'Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,' Appl. Opt. 38, 6190-6200 (1999).
    [Crossref]
  2. M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
    [Crossref]
  3. M. W. Haney and M. P. Christensen, 'Performance scaling comparison for free space optical and electrical interconnection approaches,' Appl. Opt. 37, 2886-2894 (1998).
    [Crossref]
  4. R. R. Michael, M. P. Christensen, and M. W. Haney, 'Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding banyan network,' J. Lightwave Technol. 9, 1970-1978 (1996).
    [Crossref]
  5. D. T. Nielson and C. P. Barrett, 'Performance trade-offs for conventional lenses for free-space digital optics,' Appl. Opt. 35, 1240-1248 (1996).
    [Crossref]
  6. A. G. Kirk, D. Plant, M. Ayliffe, M. Chateauneuf, and F. Lacroix, 'Design rules for highly parallel free-space optical interconnects,' IEEE J. Sel. Top. Quantum Electron. 9, 531-547 (2003).
    [Crossref]
  7. D. R. Rolston, B. Robertson, H. S. Hinton, and D. V. Plant, 'Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,' Appl. Opt. 35, 1220-1233 (1996).
    [Crossref] [PubMed]
  8. G. Schulz, 'Imaging performance of aspherics in comparison with spherical surfaces,' Appl. Opt. 26, 5118-5124 (1987).
    [Crossref] [PubMed]
  9. G. Shulz, 'Aberration-free imaging of large fields with thin pencils,' Opt. Acta 32, 1361-1371 (1985).
    [Crossref]
  10. OSLO SIX, Sinclair Optics, 6780 Palmyra Road, Fairport, New York 14450.
  11. P. Milojkovic, M. P. Christensen, and M. W. Haney, 'Minimum lens complexity design approach for a free-space macro-optical multi-chip global interconnection module,' presented at the Optics in Computing 2000 Conference, Quebec City, Canada, June 18-23, 2000.
  12. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Wiley, 1995), pp. 23, 24.
  13. E. Towe, ed., Heterogeneous Optical Integration (SPIE, 2000), Chap. 4.
  14. M. Christensen, P. Milojkovic, and M. W. Haney, 'Multi-scale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,' IEEE J. Sel. Top. Quantum Electron. 9, 548-556 (2003).
    [Crossref]
  15. C. Gimkiewicz and J. Jahns, 'Air cooling of a VCSEL diode array on quartz,' 1998, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb98/CG3.pdf.
  16. C. Gimkiewicz, G. Grabosch, D. Hagedorn, and J. Jahns, 'Cooling of laser diode arrays in planar optical systems,' 2000, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb00/Cooling.pdf.
  17. M. Miller and I. Kardosh, 'Improved output performance of high-power VCSELs,' Annual Report 2001, OptoelectronicsDepartment, University of Ulm, www.opto.e-technik.uni-ulm.de/forschung/jahresbericht/2001/ar01mim.pdf.
  18. D. Francis, H. L. Chen, W. Yuen, G. Li, and C. Chang-Hasnain, 'Monolithic 2-D VCSEL array with >2 W CW and >5 W pulsed power,' Electron. Lett. 34, 2132-2133 (1998).
    [Crossref]
  19. Y. Liu, 'Heterogeneous integration of optoelectronic element arrays with Si electronics and micro-optics,' IEEE Trans. Adv. Packag. 25, 43-49 (2002).
    [Crossref]
  20. K. L. Lear, R. P. Schneider, Jr., K. D. Choquette, and S. P. Kilcoyne, 'Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,' IEEE Photon. Technol. Lett. 8, 740-742 (1996).
    [Crossref]
  21. J. Lehman, 'Honeywell advanced photonics development overview,' presented at the 2nd Workshop on Optical Read-out Technologies for ATLAS Oxford, UK, January 7, 1999; www.cern.ch/Atlas/GROUPS/FRONTEND/links/oxford_wkshp/honeywell.ppt.
  22. C. Wilmsen, H. Temkin, and L. Coldren, eds. Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999), p. 222.
  23. This is not taken directly from any particular VCSEL data sheet (it is just a convenient starting point for calculations), but there are a number of VCSEL products that have specs that approximately match this assumption. For example, see http://www.ulm-photonics.de/docs/pdfs/17032003/VCSEL-ULM-5G-1x1-chip.pdf.
  24. J. Eckman and X. Wang, University of Delaware, private communication (January 2004).
  25. L. A. Coldren, Y. A. Akulova, E. M. Strzelecka, B. J. Thibeault, J. C. Ko, and D. A. Louderback, 'VCSEL array packaging for free space interconnects,' Report 1996-97 for MICRO Project 96-050, UCSB Santa Barbara Research Center.
  26. Yongqi Fu and Ngoi Kok Ann Bryan, 'Investigation of hybrid microlens integration with vertical cavity surface-emitting lasers for free-space optical links,' Opt. Express 10, 413-418 (2002).
  27. S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000).
    [Crossref]
  28. Yongqi Fu, 'Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,' IEEE Photon. Technol. Lett. 13, 424-426 (2001).
    [Crossref]

2003 (2)

A. G. Kirk, D. Plant, M. Ayliffe, M. Chateauneuf, and F. Lacroix, 'Design rules for highly parallel free-space optical interconnects,' IEEE J. Sel. Top. Quantum Electron. 9, 531-547 (2003).
[Crossref]

M. Christensen, P. Milojkovic, and M. W. Haney, 'Multi-scale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,' IEEE J. Sel. Top. Quantum Electron. 9, 548-556 (2003).
[Crossref]

2002 (2)

Y. Liu, 'Heterogeneous integration of optoelectronic element arrays with Si electronics and micro-optics,' IEEE Trans. Adv. Packag. 25, 43-49 (2002).
[Crossref]

Yongqi Fu and Ngoi Kok Ann Bryan, 'Investigation of hybrid microlens integration with vertical cavity surface-emitting lasers for free-space optical links,' Opt. Express 10, 413-418 (2002).

2001 (1)

Yongqi Fu, 'Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,' IEEE Photon. Technol. Lett. 13, 424-426 (2001).
[Crossref]

2000 (2)

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000).
[Crossref]

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

1999 (1)

1998 (2)

D. Francis, H. L. Chen, W. Yuen, G. Li, and C. Chang-Hasnain, 'Monolithic 2-D VCSEL array with >2 W CW and >5 W pulsed power,' Electron. Lett. 34, 2132-2133 (1998).
[Crossref]

M. W. Haney and M. P. Christensen, 'Performance scaling comparison for free space optical and electrical interconnection approaches,' Appl. Opt. 37, 2886-2894 (1998).
[Crossref]

1996 (4)

R. R. Michael, M. P. Christensen, and M. W. Haney, 'Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding banyan network,' J. Lightwave Technol. 9, 1970-1978 (1996).
[Crossref]

D. T. Nielson and C. P. Barrett, 'Performance trade-offs for conventional lenses for free-space digital optics,' Appl. Opt. 35, 1240-1248 (1996).
[Crossref]

D. R. Rolston, B. Robertson, H. S. Hinton, and D. V. Plant, 'Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,' Appl. Opt. 35, 1220-1233 (1996).
[Crossref] [PubMed]

K. L. Lear, R. P. Schneider, Jr., K. D. Choquette, and S. P. Kilcoyne, 'Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,' IEEE Photon. Technol. Lett. 8, 740-742 (1996).
[Crossref]

1987 (1)

1985 (1)

G. Shulz, 'Aberration-free imaging of large fields with thin pencils,' Opt. Acta 32, 1361-1371 (1985).
[Crossref]

Akulova, Y. A.

L. A. Coldren, Y. A. Akulova, E. M. Strzelecka, B. J. Thibeault, J. C. Ko, and D. A. Louderback, 'VCSEL array packaging for free space interconnects,' Report 1996-97 for MICRO Project 96-050, UCSB Santa Barbara Research Center.

Ayliffe, M.

A. G. Kirk, D. Plant, M. Ayliffe, M. Chateauneuf, and F. Lacroix, 'Design rules for highly parallel free-space optical interconnects,' IEEE J. Sel. Top. Quantum Electron. 9, 531-547 (2003).
[Crossref]

Baechtold, W.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000).
[Crossref]

Barrett, C. P.

Bryan, Ngoi Kok Ann

Chandramani, P.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, L. Yue, and M. Hibbs-Brenner, 'Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,' Appl. Opt. 38, 6190-6200 (1999).
[Crossref]

Chang-Hasnain, C.

D. Francis, H. L. Chen, W. Yuen, G. Li, and C. Chang-Hasnain, 'Monolithic 2-D VCSEL array with >2 W CW and >5 W pulsed power,' Electron. Lett. 34, 2132-2133 (1998).
[Crossref]

Chateauneuf, M.

A. G. Kirk, D. Plant, M. Ayliffe, M. Chateauneuf, and F. Lacroix, 'Design rules for highly parallel free-space optical interconnects,' IEEE J. Sel. Top. Quantum Electron. 9, 531-547 (2003).
[Crossref]

Chen, H. L.

D. Francis, H. L. Chen, W. Yuen, G. Li, and C. Chang-Hasnain, 'Monolithic 2-D VCSEL array with >2 W CW and >5 W pulsed power,' Electron. Lett. 34, 2132-2133 (1998).
[Crossref]

Choquette, K. D.

K. L. Lear, R. P. Schneider, Jr., K. D. Choquette, and S. P. Kilcoyne, 'Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,' IEEE Photon. Technol. Lett. 8, 740-742 (1996).
[Crossref]

Christensen, M.

M. Christensen, P. Milojkovic, and M. W. Haney, 'Multi-scale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,' IEEE J. Sel. Top. Quantum Electron. 9, 548-556 (2003).
[Crossref]

Christensen, M. P.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, L. Yue, and M. Hibbs-Brenner, 'Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,' Appl. Opt. 38, 6190-6200 (1999).
[Crossref]

M. W. Haney and M. P. Christensen, 'Performance scaling comparison for free space optical and electrical interconnection approaches,' Appl. Opt. 37, 2886-2894 (1998).
[Crossref]

R. R. Michael, M. P. Christensen, and M. W. Haney, 'Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding banyan network,' J. Lightwave Technol. 9, 1970-1978 (1996).
[Crossref]

P. Milojkovic, M. P. Christensen, and M. W. Haney, 'Minimum lens complexity design approach for a free-space macro-optical multi-chip global interconnection module,' presented at the Optics in Computing 2000 Conference, Quebec City, Canada, June 18-23, 2000.

Coldren, L.

C. Wilmsen, H. Temkin, and L. Coldren, eds. Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999), p. 222.

Coldren, L. A.

L. A. Coldren, Y. A. Akulova, E. M. Strzelecka, B. J. Thibeault, J. C. Ko, and D. A. Louderback, 'VCSEL array packaging for free space interconnects,' Report 1996-97 for MICRO Project 96-050, UCSB Santa Barbara Research Center.

Eckman, J.

J. Eckman and X. Wang, University of Delaware, private communication (January 2004).

Eitel, S.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000).
[Crossref]

Ekman, J.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, L. Yue, and M. Hibbs-Brenner, 'Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,' Appl. Opt. 38, 6190-6200 (1999).
[Crossref]

Fancey, S. J.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000).
[Crossref]

Fokken, G. J.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

Francis, D.

D. Francis, H. L. Chen, W. Yuen, G. Li, and C. Chang-Hasnain, 'Monolithic 2-D VCSEL array with >2 W CW and >5 W pulsed power,' Electron. Lett. 34, 2132-2133 (1998).
[Crossref]

Fu, Yongqi

Yongqi Fu and Ngoi Kok Ann Bryan, 'Investigation of hybrid microlens integration with vertical cavity surface-emitting lasers for free-space optical links,' Opt. Express 10, 413-418 (2002).

Yongqi Fu, 'Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,' IEEE Photon. Technol. Lett. 13, 424-426 (2001).
[Crossref]

Gauggel, H. P.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000).
[Crossref]

Gilbert, B. K.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

Gimkiewicz, C.

C. Gimkiewicz, G. Grabosch, D. Hagedorn, and J. Jahns, 'Cooling of laser diode arrays in planar optical systems,' 2000, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb00/Cooling.pdf.

C. Gimkiewicz and J. Jahns, 'Air cooling of a VCSEL diode array on quartz,' 1998, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb98/CG3.pdf.

Grabosch, G.

C. Gimkiewicz, G. Grabosch, D. Hagedorn, and J. Jahns, 'Cooling of laser diode arrays in planar optical systems,' 2000, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb00/Cooling.pdf.

Gulden, K. H.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000).
[Crossref]

Hagedorn, D.

C. Gimkiewicz, G. Grabosch, D. Hagedorn, and J. Jahns, 'Cooling of laser diode arrays in planar optical systems,' 2000, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb00/Cooling.pdf.

Haney, M. W.

M. Christensen, P. Milojkovic, and M. W. Haney, 'Multi-scale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,' IEEE J. Sel. Top. Quantum Electron. 9, 548-556 (2003).
[Crossref]

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, L. Yue, and M. Hibbs-Brenner, 'Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,' Appl. Opt. 38, 6190-6200 (1999).
[Crossref]

M. W. Haney and M. P. Christensen, 'Performance scaling comparison for free space optical and electrical interconnection approaches,' Appl. Opt. 37, 2886-2894 (1998).
[Crossref]

R. R. Michael, M. P. Christensen, and M. W. Haney, 'Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding banyan network,' J. Lightwave Technol. 9, 1970-1978 (1996).
[Crossref]

P. Milojkovic, M. P. Christensen, and M. W. Haney, 'Minimum lens complexity design approach for a free-space macro-optical multi-chip global interconnection module,' presented at the Optics in Computing 2000 Conference, Quebec City, Canada, June 18-23, 2000.

Hibbs-Brenner, M.

Hinton, H. S.

Jahns, J.

C. Gimkiewicz and J. Jahns, 'Air cooling of a VCSEL diode array on quartz,' 1998, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb98/CG3.pdf.

C. Gimkiewicz, G. Grabosch, D. Hagedorn, and J. Jahns, 'Cooling of laser diode arrays in planar optical systems,' 2000, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb00/Cooling.pdf.

Kardosh, I.

M. Miller and I. Kardosh, 'Improved output performance of high-power VCSELs,' Annual Report 2001, OptoelectronicsDepartment, University of Ulm, www.opto.e-technik.uni-ulm.de/forschung/jahresbericht/2001/ar01mim.pdf.

Kiamilev, F.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, L. Yue, and M. Hibbs-Brenner, 'Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,' Appl. Opt. 38, 6190-6200 (1999).
[Crossref]

Kilcoyne, S. P.

K. L. Lear, R. P. Schneider, Jr., K. D. Choquette, and S. P. Kilcoyne, 'Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,' IEEE Photon. Technol. Lett. 8, 740-742 (1996).
[Crossref]

Kirk, A. G.

A. G. Kirk, D. Plant, M. Ayliffe, M. Chateauneuf, and F. Lacroix, 'Design rules for highly parallel free-space optical interconnects,' IEEE J. Sel. Top. Quantum Electron. 9, 531-547 (2003).
[Crossref]

Ko, J. C.

L. A. Coldren, Y. A. Akulova, E. M. Strzelecka, B. J. Thibeault, J. C. Ko, and D. A. Louderback, 'VCSEL array packaging for free space interconnects,' Report 1996-97 for MICRO Project 96-050, UCSB Santa Barbara Research Center.

Lacroix, F.

A. G. Kirk, D. Plant, M. Ayliffe, M. Chateauneuf, and F. Lacroix, 'Design rules for highly parallel free-space optical interconnects,' IEEE J. Sel. Top. Quantum Electron. 9, 531-547 (2003).
[Crossref]

Lear, K. L.

K. L. Lear, R. P. Schneider, Jr., K. D. Choquette, and S. P. Kilcoyne, 'Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,' IEEE Photon. Technol. Lett. 8, 740-742 (1996).
[Crossref]

Lehman, J.

J. Lehman, 'Honeywell advanced photonics development overview,' presented at the 2nd Workshop on Optical Read-out Technologies for ATLAS Oxford, UK, January 7, 1999; www.cern.ch/Atlas/GROUPS/FRONTEND/links/oxford_wkshp/honeywell.ppt.

Li, G.

D. Francis, H. L. Chen, W. Yuen, G. Li, and C. Chang-Hasnain, 'Monolithic 2-D VCSEL array with >2 W CW and >5 W pulsed power,' Electron. Lett. 34, 2132-2133 (1998).
[Crossref]

Liu, Y.

Y. Liu, 'Heterogeneous integration of optoelectronic element arrays with Si electronics and micro-optics,' IEEE Trans. Adv. Packag. 25, 43-49 (2002).
[Crossref]

Louderback, D. A.

L. A. Coldren, Y. A. Akulova, E. M. Strzelecka, B. J. Thibeault, J. C. Ko, and D. A. Louderback, 'VCSEL array packaging for free space interconnects,' Report 1996-97 for MICRO Project 96-050, UCSB Santa Barbara Research Center.

Michael, R. R.

R. R. Michael, M. P. Christensen, and M. W. Haney, 'Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding banyan network,' J. Lightwave Technol. 9, 1970-1978 (1996).
[Crossref]

Miller, M.

M. Miller and I. Kardosh, 'Improved output performance of high-power VCSELs,' Annual Report 2001, OptoelectronicsDepartment, University of Ulm, www.opto.e-technik.uni-ulm.de/forschung/jahresbericht/2001/ar01mim.pdf.

Milojkovic, P.

M. Christensen, P. Milojkovic, and M. W. Haney, 'Multi-scale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,' IEEE J. Sel. Top. Quantum Electron. 9, 548-556 (2003).
[Crossref]

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, L. Yue, and M. Hibbs-Brenner, 'Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,' Appl. Opt. 38, 6190-6200 (1999).
[Crossref]

P. Milojkovic, M. P. Christensen, and M. W. Haney, 'Minimum lens complexity design approach for a free-space macro-optical multi-chip global interconnection module,' presented at the Optics in Computing 2000 Conference, Quebec City, Canada, June 18-23, 2000.

Nielson, D. T.

Plant, D.

A. G. Kirk, D. Plant, M. Ayliffe, M. Chateauneuf, and F. Lacroix, 'Design rules for highly parallel free-space optical interconnects,' IEEE J. Sel. Top. Quantum Electron. 9, 531-547 (2003).
[Crossref]

Plant, D. V.

Rieve, J.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

Robertson, B.

Rolston, D. R.

Rozier, R.

Sale, T. E.

T. E. Sale, Vertical Cavity Surface Emitting Lasers (Wiley, 1995), pp. 23, 24.

Schneider, R. P.

K. L. Lear, R. P. Schneider, Jr., K. D. Choquette, and S. P. Kilcoyne, 'Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,' IEEE Photon. Technol. Lett. 8, 740-742 (1996).
[Crossref]

Schulz, G.

Shulz, G.

G. Shulz, 'Aberration-free imaging of large fields with thin pencils,' Opt. Acta 32, 1361-1371 (1985).
[Crossref]

Strzelecka, E. M.

L. A. Coldren, Y. A. Akulova, E. M. Strzelecka, B. J. Thibeault, J. C. Ko, and D. A. Louderback, 'VCSEL array packaging for free space interconnects,' Report 1996-97 for MICRO Project 96-050, UCSB Santa Barbara Research Center.

Taghizadeh, M. R.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000).
[Crossref]

Temkin, H.

C. Wilmsen, H. Temkin, and L. Coldren, eds. Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999), p. 222.

Thibeault, B. J.

L. A. Coldren, Y. A. Akulova, E. M. Strzelecka, B. J. Thibeault, J. C. Ko, and D. A. Louderback, 'VCSEL array packaging for free space interconnects,' Report 1996-97 for MICRO Project 96-050, UCSB Santa Barbara Research Center.

Towe, E.

E. Towe, ed., Heterogeneous Optical Integration (SPIE, 2000), Chap. 4.

Vickberg, M.

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

Wang, X.

J. Eckman and X. Wang, University of Delaware, private communication (January 2004).

Wilmsen, C.

C. Wilmsen, H. Temkin, and L. Coldren, eds. Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999), p. 222.

Yue, L.

Yuen, W.

D. Francis, H. L. Chen, W. Yuen, G. Li, and C. Chang-Hasnain, 'Monolithic 2-D VCSEL array with >2 W CW and >5 W pulsed power,' Electron. Lett. 34, 2132-2133 (1998).
[Crossref]

Appl. Opt. (5)

Electron. Lett. (1)

D. Francis, H. L. Chen, W. Yuen, G. Li, and C. Chang-Hasnain, 'Monolithic 2-D VCSEL array with >2 W CW and >5 W pulsed power,' Electron. Lett. 34, 2132-2133 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. G. Kirk, D. Plant, M. Ayliffe, M. Chateauneuf, and F. Lacroix, 'Design rules for highly parallel free-space optical interconnects,' IEEE J. Sel. Top. Quantum Electron. 9, 531-547 (2003).
[Crossref]

M. Christensen, P. Milojkovic, and M. W. Haney, 'Multi-scale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,' IEEE J. Sel. Top. Quantum Electron. 9, 548-556 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (3)

K. L. Lear, R. P. Schneider, Jr., K. D. Choquette, and S. P. Kilcoyne, 'Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,' IEEE Photon. Technol. Lett. 8, 740-742 (1996).
[Crossref]

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000).
[Crossref]

Yongqi Fu, 'Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,' IEEE Photon. Technol. Lett. 13, 424-426 (2001).
[Crossref]

IEEE Trans. Adv. Packag. (1)

Y. Liu, 'Heterogeneous integration of optoelectronic element arrays with Si electronics and micro-optics,' IEEE Trans. Adv. Packag. 25, 43-49 (2002).
[Crossref]

J. Lightwave Technol. (1)

R. R. Michael, M. P. Christensen, and M. W. Haney, 'Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding banyan network,' J. Lightwave Technol. 9, 1970-1978 (1996).
[Crossref]

Opt. Acta (1)

G. Shulz, 'Aberration-free imaging of large fields with thin pencils,' Opt. Acta 32, 1361-1371 (1985).
[Crossref]

Opt. Express (1)

Proc. IEEE (1)

M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000).
[Crossref]

Other (12)

OSLO SIX, Sinclair Optics, 6780 Palmyra Road, Fairport, New York 14450.

P. Milojkovic, M. P. Christensen, and M. W. Haney, 'Minimum lens complexity design approach for a free-space macro-optical multi-chip global interconnection module,' presented at the Optics in Computing 2000 Conference, Quebec City, Canada, June 18-23, 2000.

T. E. Sale, Vertical Cavity Surface Emitting Lasers (Wiley, 1995), pp. 23, 24.

E. Towe, ed., Heterogeneous Optical Integration (SPIE, 2000), Chap. 4.

C. Gimkiewicz and J. Jahns, 'Air cooling of a VCSEL diode array on quartz,' 1998, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb98/CG3.pdf.

C. Gimkiewicz, G. Grabosch, D. Hagedorn, and J. Jahns, 'Cooling of laser diode arrays in planar optical systems,' 2000, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb00/Cooling.pdf.

M. Miller and I. Kardosh, 'Improved output performance of high-power VCSELs,' Annual Report 2001, OptoelectronicsDepartment, University of Ulm, www.opto.e-technik.uni-ulm.de/forschung/jahresbericht/2001/ar01mim.pdf.

J. Lehman, 'Honeywell advanced photonics development overview,' presented at the 2nd Workshop on Optical Read-out Technologies for ATLAS Oxford, UK, January 7, 1999; www.cern.ch/Atlas/GROUPS/FRONTEND/links/oxford_wkshp/honeywell.ppt.

C. Wilmsen, H. Temkin, and L. Coldren, eds. Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999), p. 222.

This is not taken directly from any particular VCSEL data sheet (it is just a convenient starting point for calculations), but there are a number of VCSEL products that have specs that approximately match this assumption. For example, see http://www.ulm-photonics.de/docs/pdfs/17032003/VCSEL-ULM-5G-1x1-chip.pdf.

J. Eckman and X. Wang, University of Delaware, private communication (January 2004).

L. A. Coldren, Y. A. Akulova, E. M. Strzelecka, B. J. Thibeault, J. C. Ko, and D. A. Louderback, 'VCSEL array packaging for free space interconnects,' Report 1996-97 for MICRO Project 96-050, UCSB Santa Barbara Research Center.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

In the FAST-Net system, a multichip smart pixel array is linked to itself in a global optical interconnection pattern provided by the lens array and the mirror. An optical beam shown depicts the light path between a VCSEL on one of the smart-pixel chips and the corresponding photodetector on another chip.

Fig. 2
Fig. 2

Schematic cross section of the FAST-Net system showing interconnection pattern between smart-pixel chips. The position of each VCSEL is mapped onto the corresponding beam angle in the space between sending and receiving lenses. After passing through the receiving lens the angle of the beam is mapped back into the position of the focused spot on the receiving chip.

Fig. 3
Fig. 3

Graphical representation of the terms of the wave aberration function. Large and small squares and rectangles encompass the coefficients, which are relevant for the typical imaging cases listed in Table 1.

Fig. 4
Fig. 4

Rectangle that covers all relevant aberration coefficients for the analyzed FAST-Net system. The aspect ratio of the rectangle depends on the angular imbalance ratio of the system (ratio of the maximum field and aperture angles).

Fig. 5
Fig. 5

Three-dimensional view of the terms of the wave aberration function that need to be controlled by aspherical surfaces in the FAST-Net system and the line segments needed to cover them.

Fig. 6
Fig. 6

VCSEL spacing and lens complexity as functions of VCSEL NA for the case without microlenses and with a thermal limit of 10 W / cm 2 .

Fig. 7
Fig. 7

VCSEL spacing and lens complexity as functions of VCSEL NA for the case with microlenses.

Fig. 8
Fig. 8

VCSEL spacing and lens complexity as function of NA for the cases with and without microlenses.

Tables (3)

Tables Icon

Table 1 Replacement Efficiency Parameter R for the Typical Imaging Cases Separated by the Field and Aperture Angles

Tables Icon

Table 2 Wavefront Aberration Coefficients to be Controlled in the Analyzed FAST-Net System

Tables Icon

Table 3 Parameters of the FAST-Net System for VCSELs with Different NAs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W ( r , ρ , cos θ ) = μ ν τ C ν τ μ r μ ρ ν cos τ θ ,
W = ν τ G ν τ ( r ) ρ ν cos τ θ , G ν τ ( r ) = μ C ν τ μ r μ ,
z = a 1 h 2 1 + 1 a 1 2 h 2 + a 2 h 4 + a 3 h 6 +

Metrics