Abstract

We investigate robust optical wireless communication in a highly scattering propagation medium using multielement optical detector arrays. The communication setup consists of synchronized multiple transmitters that send information to a receiver array and an atmospheric propagation channel. The mathematical model that best describes this scenario is multi-input to multi-output communication through stochastic slow changing channels. In this model, signals from m transmitters are received by n receiver–detectors. The channel transfer function matrix is G, and its size is n×m. Gi,j is the transfer function from transmitter i to detector j, and mn. We adopt a quasi-stationary approach in which the channel time variation has a negligible effect on communication performance over a burst. The G matrix is calculated on the basis of the optical transfer function of the atmospheric channel (composed of aerosol and turbulence elements) and the receiver’s optics. In this work we derive a performance model using environmental data, such as documented turbulence and aerosol models and noise statistics. We also present the results of simulations conducted for the proposed detection algorithm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arnon, 'Optical wireless communication,' invited chapter for The Encyclopedia of Optical Engineering (EOE) (Marcel Dekker, 2003).
  2. S. Arnon and N. S. Kopeika, 'Free space optical communication: detector array aperture for optical communication through thin clouds,' Opt. Eng. (Bellingham) 34, 516-521 (1995).
  3. D. Bushuev, D. Kedar, and S. Arnon, 'Analyzing the performance of a nanosatellite cluster-detector array receiver for laser communication,' J. Lightwave Technol. 21, 447-455 (2003).
    [CrossRef]
  4. M. Rim, 'Multi-user downlink beamforming with multiple transmit and receive antennas,' Electron. Lett. 38, 1725-1726 (2002).
    [CrossRef]
  5. K. Liu, V. Raghavan, and A. M. Sayeed, 'Capacity scaling and spectral efficiency in wide-band correlated MIMO channels,' IEEE Trans. Inf. Theory 49, 2504-2526 (2003).
    [CrossRef]
  6. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2000).
  7. S. Hranilovic and F. R. Kschischang, 'Short-range wireless optical communication using pixelated transmitters and imaging receivers,' in IEEE International Conference on Communications 2004 (IEEE, 2004), Vol. 2, pp. 891-895.
  8. S. Arnon, E. Kayton, and D. Marom, 'A new approach to detector array receiver performance analysis for laser satellite communication,' in Proc. SPIE 4489, 118-125 (2002).
    [CrossRef]
  9. S. Arnon and N. S. Kopeika, 'Adaptive suboptimum detection of an optical pulse-position-modulation signal with detection matrix and centroid tracking,' J. Opt. Soc. Am. A 15, 443-448 (1998).
    [CrossRef]
  10. K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
    [CrossRef]
  11. S. Bendersky, N. Kopeika, and N. Blaunstein, 'Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,' Opt. Eng. (Bellingham) 43, 539-552 (2004).
    [CrossRef]
  12. R. A. Sutherland, J. R. Montoya, and B. R. Usevitch, 'Factors affecting signature propagation through intense forward scattering atmospheres,' in Proc. SPIE 5075, 332-341 (2003).
    [CrossRef]
  13. G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, 'Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,' Electron. Lett. 35, 14-16 (1999).
    [CrossRef]
  14. G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, 'Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,' IEEE J. Sel. Areas Commun. 17, 1841-1852 (1999).
    [CrossRef]
  15. J. Fu, D. Yang, and M. Ma, 'A novel V-BLAST detection algorithm,' in International Conference on Communication Technology Proceedings, ICCT (IEEE, 2003), Vol. 2, pp. 1202-1205.
    [CrossRef]
  16. C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (SPIE, 2002).
  17. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).
  18. R. Gagliardi and S. Karp, Optical Communications (Wiley, 1995).
  19. G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. (The Johns Hopkins U. Press, 1989).
  20. L. C. Hui and K. B. Letaeief, 'Successive interference cancellation for multiuser asynchronous DS/CDMA detectors in multipath fading links,' IEEE Trans. Commun. 46, 384-391 (1998).
    [CrossRef]
  21. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
    [CrossRef]
  22. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, 1976).
  23. A. M. Sayeed, V. Raghavan, and J. Kotecha, 'Capacity of space-time wireless channels: a physical perspective,' Proceedings of IEEE Information Theory Workshop 2004 (IEEE, 2004), pp. 434-439.
  24. V. Raghavan and A. M. Sayeed, 'Role of channel power in sub-linear capacity scaling of MIMO channels,' presented at 42nd Annual Allerton Conference on Communication, Control and Computing, Monticello, Illinois, September 29-October 1, 2004.

2004 (1)

S. Bendersky, N. Kopeika, and N. Blaunstein, 'Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,' Opt. Eng. (Bellingham) 43, 539-552 (2004).
[CrossRef]

2003 (4)

R. A. Sutherland, J. R. Montoya, and B. R. Usevitch, 'Factors affecting signature propagation through intense forward scattering atmospheres,' in Proc. SPIE 5075, 332-341 (2003).
[CrossRef]

K. Liu, V. Raghavan, and A. M. Sayeed, 'Capacity scaling and spectral efficiency in wide-band correlated MIMO channels,' IEEE Trans. Inf. Theory 49, 2504-2526 (2003).
[CrossRef]

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

D. Bushuev, D. Kedar, and S. Arnon, 'Analyzing the performance of a nanosatellite cluster-detector array receiver for laser communication,' J. Lightwave Technol. 21, 447-455 (2003).
[CrossRef]

2002 (2)

M. Rim, 'Multi-user downlink beamforming with multiple transmit and receive antennas,' Electron. Lett. 38, 1725-1726 (2002).
[CrossRef]

S. Arnon, E. Kayton, and D. Marom, 'A new approach to detector array receiver performance analysis for laser satellite communication,' in Proc. SPIE 4489, 118-125 (2002).
[CrossRef]

1999 (2)

G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, 'Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,' Electron. Lett. 35, 14-16 (1999).
[CrossRef]

G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, 'Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,' IEEE J. Sel. Areas Commun. 17, 1841-1852 (1999).
[CrossRef]

1998 (2)

L. C. Hui and K. B. Letaeief, 'Successive interference cancellation for multiuser asynchronous DS/CDMA detectors in multipath fading links,' IEEE Trans. Commun. 46, 384-391 (1998).
[CrossRef]

S. Arnon and N. S. Kopeika, 'Adaptive suboptimum detection of an optical pulse-position-modulation signal with detection matrix and centroid tracking,' J. Opt. Soc. Am. A 15, 443-448 (1998).
[CrossRef]

1995 (1)

S. Arnon and N. S. Kopeika, 'Free space optical communication: detector array aperture for optical communication through thin clouds,' Opt. Eng. (Bellingham) 34, 516-521 (1995).

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
[CrossRef]

Arnon, S.

D. Bushuev, D. Kedar, and S. Arnon, 'Analyzing the performance of a nanosatellite cluster-detector array receiver for laser communication,' J. Lightwave Technol. 21, 447-455 (2003).
[CrossRef]

S. Arnon, E. Kayton, and D. Marom, 'A new approach to detector array receiver performance analysis for laser satellite communication,' in Proc. SPIE 4489, 118-125 (2002).
[CrossRef]

S. Arnon and N. S. Kopeika, 'Adaptive suboptimum detection of an optical pulse-position-modulation signal with detection matrix and centroid tracking,' J. Opt. Soc. Am. A 15, 443-448 (1998).
[CrossRef]

S. Arnon and N. S. Kopeika, 'Free space optical communication: detector array aperture for optical communication through thin clouds,' Opt. Eng. (Bellingham) 34, 516-521 (1995).

S. Arnon, 'Optical wireless communication,' invited chapter for The Encyclopedia of Optical Engineering (EOE) (Marcel Dekker, 2003).

Asazu, H.

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

Becklund, O. A.

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (SPIE, 2002).

Bendersky, S.

S. Bendersky, N. Kopeika, and N. Blaunstein, 'Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,' Opt. Eng. (Bellingham) 43, 539-552 (2004).
[CrossRef]

Blaunstein, N.

S. Bendersky, N. Kopeika, and N. Blaunstein, 'Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,' Opt. Eng. (Bellingham) 43, 539-552 (2004).
[CrossRef]

Bushuev, D.

Foschini, G. J.

G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, 'Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,' IEEE J. Sel. Areas Commun. 17, 1841-1852 (1999).
[CrossRef]

G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, 'Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,' Electron. Lett. 35, 14-16 (1999).
[CrossRef]

Fu, J.

J. Fu, D. Yang, and M. Ma, 'A novel V-BLAST detection algorithm,' in International Conference on Communication Technology Proceedings, ICCT (IEEE, 2003), Vol. 2, pp. 1202-1205.
[CrossRef]

Gagliardi, R.

R. Gagliardi and S. Karp, Optical Communications (Wiley, 1995).

Golden, G. D.

G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, 'Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,' IEEE J. Sel. Areas Commun. 17, 1841-1852 (1999).
[CrossRef]

G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, 'Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,' Electron. Lett. 35, 14-16 (1999).
[CrossRef]

Golub, G. H.

G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. (The Johns Hopkins U. Press, 1989).

Hranilovic, S.

S. Hranilovic and F. R. Kschischang, 'Short-range wireless optical communication using pixelated transmitters and imaging receivers,' in IEEE International Conference on Communications 2004 (IEEE, 2004), Vol. 2, pp. 891-895.

Hui, L. C.

L. C. Hui and K. B. Letaeief, 'Successive interference cancellation for multiuser asynchronous DS/CDMA detectors in multipath fading links,' IEEE Trans. Commun. 46, 384-391 (1998).
[CrossRef]

Kagawa, K.

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

Karp, S.

R. Gagliardi and S. Karp, Optical Communications (Wiley, 1995).

Kawakami, T.

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

Kayton, E.

S. Arnon, E. Kayton, and D. Marom, 'A new approach to detector array receiver performance analysis for laser satellite communication,' in Proc. SPIE 4489, 118-125 (2002).
[CrossRef]

Kedar, D.

Kopeika, N.

S. Bendersky, N. Kopeika, and N. Blaunstein, 'Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,' Opt. Eng. (Bellingham) 43, 539-552 (2004).
[CrossRef]

Kopeika, N. S.

S. Arnon and N. S. Kopeika, 'Adaptive suboptimum detection of an optical pulse-position-modulation signal with detection matrix and centroid tracking,' J. Opt. Soc. Am. A 15, 443-448 (1998).
[CrossRef]

S. Arnon and N. S. Kopeika, 'Free space optical communication: detector array aperture for optical communication through thin clouds,' Opt. Eng. (Bellingham) 34, 516-521 (1995).

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).

Kotecha, J.

A. M. Sayeed, V. Raghavan, and J. Kotecha, 'Capacity of space-time wireless channels: a physical perspective,' Proceedings of IEEE Information Theory Workshop 2004 (IEEE, 2004), pp. 434-439.

Kschischang, F. R.

S. Hranilovic and F. R. Kschischang, 'Short-range wireless optical communication using pixelated transmitters and imaging receivers,' in IEEE International Conference on Communications 2004 (IEEE, 2004), Vol. 2, pp. 891-895.

Letaeief, K. B.

L. C. Hui and K. B. Letaeief, 'Successive interference cancellation for multiuser asynchronous DS/CDMA detectors in multipath fading links,' IEEE Trans. Commun. 46, 384-391 (1998).
[CrossRef]

Liu, K.

K. Liu, V. Raghavan, and A. M. Sayeed, 'Capacity scaling and spectral efficiency in wide-band correlated MIMO channels,' IEEE Trans. Inf. Theory 49, 2504-2526 (2003).
[CrossRef]

Ma, M.

J. Fu, D. Yang, and M. Ma, 'A novel V-BLAST detection algorithm,' in International Conference on Communication Technology Proceedings, ICCT (IEEE, 2003), Vol. 2, pp. 1202-1205.
[CrossRef]

Marom, D.

S. Arnon, E. Kayton, and D. Marom, 'A new approach to detector array receiver performance analysis for laser satellite communication,' in Proc. SPIE 4489, 118-125 (2002).
[CrossRef]

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, 1976).

Montoya, J. R.

R. A. Sutherland, J. R. Montoya, and B. R. Usevitch, 'Factors affecting signature propagation through intense forward scattering atmospheres,' in Proc. SPIE 5075, 332-341 (2003).
[CrossRef]

Nishimura, T.

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

Nunoshita, M.

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

Ohta, J.

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

Proakis, J. G.

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2000).

Raghavan, V.

K. Liu, V. Raghavan, and A. M. Sayeed, 'Capacity scaling and spectral efficiency in wide-band correlated MIMO channels,' IEEE Trans. Inf. Theory 49, 2504-2526 (2003).
[CrossRef]

A. M. Sayeed, V. Raghavan, and J. Kotecha, 'Capacity of space-time wireless channels: a physical perspective,' Proceedings of IEEE Information Theory Workshop 2004 (IEEE, 2004), pp. 434-439.

V. Raghavan and A. M. Sayeed, 'Role of channel power in sub-linear capacity scaling of MIMO channels,' presented at 42nd Annual Allerton Conference on Communication, Control and Computing, Monticello, Illinois, September 29-October 1, 2004.

Rim, M.

M. Rim, 'Multi-user downlink beamforming with multiple transmit and receive antennas,' Electron. Lett. 38, 1725-1726 (2002).
[CrossRef]

Sayeed, A. M.

K. Liu, V. Raghavan, and A. M. Sayeed, 'Capacity scaling and spectral efficiency in wide-band correlated MIMO channels,' IEEE Trans. Inf. Theory 49, 2504-2526 (2003).
[CrossRef]

A. M. Sayeed, V. Raghavan, and J. Kotecha, 'Capacity of space-time wireless channels: a physical perspective,' Proceedings of IEEE Information Theory Workshop 2004 (IEEE, 2004), pp. 434-439.

V. Raghavan and A. M. Sayeed, 'Role of channel power in sub-linear capacity scaling of MIMO channels,' presented at 42nd Annual Allerton Conference on Communication, Control and Computing, Monticello, Illinois, September 29-October 1, 2004.

Sutherland, R. A.

R. A. Sutherland, J. R. Montoya, and B. R. Usevitch, 'Factors affecting signature propagation through intense forward scattering atmospheres,' in Proc. SPIE 5075, 332-341 (2003).
[CrossRef]

Usevitch, B. R.

R. A. Sutherland, J. R. Montoya, and B. R. Usevitch, 'Factors affecting signature propagation through intense forward scattering atmospheres,' in Proc. SPIE 5075, 332-341 (2003).
[CrossRef]

Valenzuela, R. A.

G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, 'Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,' IEEE J. Sel. Areas Commun. 17, 1841-1852 (1999).
[CrossRef]

G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, 'Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,' Electron. Lett. 35, 14-16 (1999).
[CrossRef]

Van Loan, C. F.

G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. (The Johns Hopkins U. Press, 1989).

Watanabe, K.

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

Williams, C. S.

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (SPIE, 2002).

Wolniansky, P. W.

G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, 'Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,' Electron. Lett. 35, 14-16 (1999).
[CrossRef]

G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, 'Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,' IEEE J. Sel. Areas Commun. 17, 1841-1852 (1999).
[CrossRef]

Yamasaki, Y.

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

Yang, D.

J. Fu, D. Yang, and M. Ma, 'A novel V-BLAST detection algorithm,' in International Conference on Communication Technology Proceedings, ICCT (IEEE, 2003), Vol. 2, pp. 1202-1205.
[CrossRef]

Electron. Lett. (2)

G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, 'Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,' Electron. Lett. 35, 14-16 (1999).
[CrossRef]

M. Rim, 'Multi-user downlink beamforming with multiple transmit and receive antennas,' Electron. Lett. 38, 1725-1726 (2002).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, 'Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,' IEEE J. Sel. Areas Commun. 17, 1841-1852 (1999).
[CrossRef]

IEEE Trans. Commun. (1)

L. C. Hui and K. B. Letaeief, 'Successive interference cancellation for multiuser asynchronous DS/CDMA detectors in multipath fading links,' IEEE Trans. Commun. 46, 384-391 (1998).
[CrossRef]

IEEE Trans. Inf. Theory (1)

K. Liu, V. Raghavan, and A. M. Sayeed, 'Capacity scaling and spectral efficiency in wide-band correlated MIMO channels,' IEEE Trans. Inf. Theory 49, 2504-2526 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (Bellingham) (2)

S. Arnon and N. S. Kopeika, 'Free space optical communication: detector array aperture for optical communication through thin clouds,' Opt. Eng. (Bellingham) 34, 516-521 (1995).

S. Bendersky, N. Kopeika, and N. Blaunstein, 'Effects of attenuation of 1.064-μm optical waves by humid aerosols and fog over horizontal atmospheric communication links,' Opt. Eng. (Bellingham) 43, 539-552 (2004).
[CrossRef]

Proc. SPIE (3)

R. A. Sutherland, J. R. Montoya, and B. R. Usevitch, 'Factors affecting signature propagation through intense forward scattering atmospheres,' in Proc. SPIE 5075, 332-341 (2003).
[CrossRef]

S. Arnon, E. Kayton, and D. Marom, 'A new approach to detector array receiver performance analysis for laser satellite communication,' in Proc. SPIE 4489, 118-125 (2002).
[CrossRef]

K. Kagawa, T. Nishimura, H. Asazu, T. Kawakami, J. Ohta, M. Nunoshita, Y. Yamasaki, and K. Watanabe, 'A CMOS image sensor working as high-speed photo receivers as well as a position sensor for indoor optical wireless LAN systems,' in Proc. SPIE 5017, 86-93 (2003).
[CrossRef]

Other (12)

S. Arnon, 'Optical wireless communication,' invited chapter for The Encyclopedia of Optical Engineering (EOE) (Marcel Dekker, 2003).

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2000).

S. Hranilovic and F. R. Kschischang, 'Short-range wireless optical communication using pixelated transmitters and imaging receivers,' in IEEE International Conference on Communications 2004 (IEEE, 2004), Vol. 2, pp. 891-895.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
[CrossRef]

E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, 1976).

A. M. Sayeed, V. Raghavan, and J. Kotecha, 'Capacity of space-time wireless channels: a physical perspective,' Proceedings of IEEE Information Theory Workshop 2004 (IEEE, 2004), pp. 434-439.

V. Raghavan and A. M. Sayeed, 'Role of channel power in sub-linear capacity scaling of MIMO channels,' presented at 42nd Annual Allerton Conference on Communication, Control and Computing, Monticello, Illinois, September 29-October 1, 2004.

J. Fu, D. Yang, and M. Ma, 'A novel V-BLAST detection algorithm,' in International Conference on Communication Technology Proceedings, ICCT (IEEE, 2003), Vol. 2, pp. 1202-1205.
[CrossRef]

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (SPIE, 2002).

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).

R. Gagliardi and S. Karp, Optical Communications (Wiley, 1995).

G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. (The Johns Hopkins U. Press, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration for a communication system utilizing MEOWC.

Fig. 2
Fig. 2

Schematic communication system.

Fig. 3
Fig. 3

Ordering optimization and routine for finding optimal spatial-matched filters d ( j ) .

Fig. 4
Fig. 4

Dependence of F 1 on aerosol scattering coefficient S a for different A a and C n 2 .

Fig. 5
Fig. 5

Results of BLER calculation for different weather conditions.

Tables (1)

Tables Icon

Table 1 Atomospheric Parameters for Different Weather Conditions

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = g ( t ) s ( t ) + ν ( t ) .
r ( t ) = g ( t ) s ( t ) + ν ( t ) .
OTF = τ ( f ) = τ ( f x , f y ) = s ( x , y ) exp [ j ( f x x + f y y ) ] d x d y s ( x , y ) d x d y = S ( f x , f y ) S ( 0 , 0 ) ,
P img ( f x , f y ) = τ ( f x , f y ) P obj ( f x , f y ) ,
τ ( f x , f y ) = τ opt ( f x , f y ) τ aer ( f x , f y ) τ tur ( f x , f x ) ,
i ( x , y ) = F 1 { τ ( f x , f y ) } ,
x j = f Z x j , y j = f Z y j .
p obj ( x , y ) = p 1 δ ( x x 1 , y y 1 ) + p 2 δ ( x x 2 , y y 2 ) + = j = 1 m p j δ ( x x n , y y n ) ,
p obj ( x , y ) = P 0 m j = 1 m δ ( x x j , y y j ) .
I ( x , y ) = j = 1 m i j ( x x j , y y j ) .
p a , b , j ( t ) = ( a I ) Δ a Δ ( b I ) Δ b Δ i j ( x x j , y y j ) d x d y ,
r i ( t ) = r 1 + fix ( i 1 n ) , 1 + rem ( i 1 , n ) ( t ) ,
h i , j ( t ) = p 1 + fix ( i 1 n ) , 1 + rem ( i 1 , n ) , j ( t ) ,
T j = L R , j G T , j L F S , j L T , j G R , j ,
h i , j ( t ) h ( t ) = [ h 1 ( t ) h 2 ( t ) h m ( t ) ] .
g ( t ) = R [ h 1 ( t ) T 1 h 2 ( t ) T 2 h m ( t ) T m ] ,
R = η q h ν ,
g ( t ) = R T h ( t ) ,
T = L R G T L F S L T G R .
g ( t ) = R m P max P 0 h ( t ) .
r ( t ) = R m P max P 0 h ( t ) s ( t ) + ν ( t ) .
z ( t ) R m P max P 0 s ( t ) .
r ( t ) = h ( t ) z ( t ) + ν ( t ) .
h = [ h 1 h 2 h m ] .
r = z 1 h 1 + z 2 h 2 + z 3 h 3 + + z m h m + ν .
z = { z ( 1 ) , z ( 2 ) , , z ( m ) } ,
h = { h ( 1 ) , h ( 2 ) , , h ( m ) } .
r = [ z ( 1 ) h ( 1 ) + z ( 2 ) h ( 2 ) + + z ( j 1 ) h ( j 1 ) ] + z ( j ) h ( j ) + [ z ( j + 1 ) h ( j + 1 ) + z ( j + 2 ) h ( j + 2 ) + + z ( m ) h ( m ) ] + ν .
y ( j ) = r j = 1 ( j 1 ) z ( j ) h ( j ) ,
y ( j ) = [ z ( j ) h ( j ) ] + [ z ( j + 1 ) h ( j + 1 ) + z ( j + 2 ) h ( j + 2 ) + + z ( m ) h ( m ) ] + ν .
proj w y ( j ) y ( j ) , γ ( j + 1 ) γ ( j + 1 ) + y ( j ) , γ ( j + 2 ) γ ( j + 2 ) + + y ( j ) , γ ( m ) γ ( m ) .
υ ( j ) = y ( j ) proj w y ( j ) = y ( j ) y ( j ) , γ ( j + 1 ) γ ( j + 1 ) y ( j ) , γ ( j + 2 ) γ ( j + 2 ) y ( j ) , γ ( m ) γ ( m ) .
υ i ( j ) = A i z ( j ) + ν ,
max ( min [ SNR j ] ) , j [ 1 , m ] .
SNR ( j ) = υ ¯ ( j ) 2 σ 2 ,
σ 2 = σ TH 2 + σ BG 2 + σ DC 2 = 4 k T e F n B R L + 2 q n R N BG Δ λ Ω D 2 4 π B + 2 q I DC B ,
P b = P e [ 1 + ( 1 P e ) + + ( 1 P e ) l 1 ] l P e .
P e = j = 1 m { P 2 ( SNR ( j ) ) i = 1 j 1 [ 1 P 2 ( SNR ( j ) ) ] } ,
P 2 ( SNR ( j ) ) = 1 2 erfc ( SNR ( j ) 2 ) ,
erfc ( x ) = 2 π x exp ( y 2 ) d y .
P b = l P 2 ( min [ SNR ( j ) ] ) .
F I = 1 m i = 1 m j i m ( I j s i ) ,
P = P b m

Metrics