Abstract

We present a theoretical study on resonance control in a double-microcavity resonator system coupled to a waveguide with gain in one microresonator and loss in the other. We demonstrate the variation of the output spectra in the waveguide from initial double-wavelength-wide symmetric resonance to double-wavelength sharper asymmetric Fano profiles when gain is introduced in one of the two microresonators, as well as the inversion of the Fano resonance pattern when gain is introduced in the other microresonator. We also investigate the enhanced coupled-resonator-induced-transparency effect in such a system.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Heebner and R. Boyd, 'Enhanced all-optical switching by use of a nonlinear fiber ring resonator,' Opt. Lett. 24, 847-849 (1999).
    [CrossRef]
  2. Y. Lu, J. Yao, X. Li, and P. Wang, 'Tunable asymmetrical Fano resonance and bistability in microcavity-resonator-coupled Mach-Zehnder interferometer,' Opt. Lett. 30, 3069-3071 (2005).
    [CrossRef] [PubMed]
  3. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, 'Microring resonator channel dropping filter,' J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  4. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, 'Coupled-resonator optical waveguide: a proposal and analysis,' Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  5. K. Oda, S. Suzuki, H. Takahashi, and H. Toba, 'An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,' IEEE Photonics Technol. Lett. 6, 1031-1034 (1994).
    [CrossRef]
  6. M. A. Borchers, C. Esen, and G. Schweiger, 'Cascade lasing with spherical microparticles,' Opt. Lett. 26, 346-348 (2001).
    [CrossRef]
  7. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, 'Coupled-resonator-induced transparency,' Phys. Rev. A 69, 063804 (2004).
    [CrossRef]
  8. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, 'Tunable delay line with interacting whispering-gallery-mode resonators,' Opt. Lett. 29, 626-628 (2004).
    [CrossRef] [PubMed]

2005 (1)

2004 (2)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, 'Coupled-resonator-induced transparency,' Phys. Rev. A 69, 063804 (2004).
[CrossRef]

L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, 'Tunable delay line with interacting whispering-gallery-mode resonators,' Opt. Lett. 29, 626-628 (2004).
[CrossRef] [PubMed]

2001 (1)

1999 (2)

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, 'Microring resonator channel dropping filter,' J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

1994 (1)

K. Oda, S. Suzuki, H. Takahashi, and H. Toba, 'An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,' IEEE Photonics Technol. Lett. 6, 1031-1034 (1994).
[CrossRef]

Borchers, M. A.

Boyd, R.

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, 'Coupled-resonator-induced transparency,' Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, 'Coupled-resonator-induced transparency,' Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, 'Microring resonator channel dropping filter,' J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Esen, C.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, 'Microring resonator channel dropping filter,' J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, 'Coupled-resonator-induced transparency,' Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, 'Microring resonator channel dropping filter,' J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Heebner, J. E.

Ilchenko, V. S.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, 'Microring resonator channel dropping filter,' J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lee, R. K.

Li, X.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, 'Microring resonator channel dropping filter,' J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lu, Y.

Maleki, L.

Matsko, A. B.

Oda, K.

K. Oda, S. Suzuki, H. Takahashi, and H. Toba, 'An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,' IEEE Photonics Technol. Lett. 6, 1031-1034 (1994).
[CrossRef]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, 'Coupled-resonator-induced transparency,' Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Savchenkov, A. A.

Scherer, A.

Schweiger, G.

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, 'Coupled-resonator-induced transparency,' Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Suzuki, S.

K. Oda, S. Suzuki, H. Takahashi, and H. Toba, 'An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,' IEEE Photonics Technol. Lett. 6, 1031-1034 (1994).
[CrossRef]

Takahashi, H.

K. Oda, S. Suzuki, H. Takahashi, and H. Toba, 'An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,' IEEE Photonics Technol. Lett. 6, 1031-1034 (1994).
[CrossRef]

Toba, H.

K. Oda, S. Suzuki, H. Takahashi, and H. Toba, 'An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,' IEEE Photonics Technol. Lett. 6, 1031-1034 (1994).
[CrossRef]

Wang, P.

Xu, Y.

Yao, J.

Yariv, A.

IEEE Photonics Technol. Lett. (1)

K. Oda, S. Suzuki, H. Takahashi, and H. Toba, 'An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,' IEEE Photonics Technol. Lett. 6, 1031-1034 (1994).
[CrossRef]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, 'Microring resonator channel dropping filter,' J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, 'Coupled-resonator-induced transparency,' Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a double-microcavity resonator system where gain has been introduced into one microresonator.

Fig. 2
Fig. 2

Intensity transmission spectra through an optical system such as that shown in Fig. 1, with a 1 = a 2 = 10 μ m and refractive index n = 1.44 , t 1 = 0.2 , t 2 = 0.2 . (a) p 2 = 0.93 and p 1 = 0.93 (curve 1), 1.04 (curve 2), 1.07 (curve 3), 1.075 (curve 4); (b) p 1 = 0.93 and p 2 = 0.94 (curve 1), 1.04 (curve 2), 1.07 (curve 3), 1.074 (curve 4).

Fig. 3
Fig. 3

Intensity transmission spectra through an optical system such as that shown in Fig. 1, with a 1 = a 2 = 10 μ m , refractive index n = 1.44 , p 1 = 1.075 , p 2 = 0.93 . (a) t 1 = 0.1 and t 2 = 0.2 (curve 1), 0.4 (curve 2); (b) t 1 = 0.3 and t 2 = 0.2 (curve 1), 0.4 (curve 2).

Fig. 4
Fig. 4

Intensity transmission spectra through an optical system such as that shown in Fig. 1, with a 1 = a 2 = 10 μ m , refractive index n = 1.44 , p 1 = 0.93 , t 1 = 0.4 , and t 2 = 0.005 . (a) p 2 = 0.93 , (b) p 2 = 0.9999 , (c) p 2 = 1.0006 , (d) intensity transmission as a function of p 2 at resonance wavelength.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E 3 = ( 1 t 1 2 ) 1 2 E 1 + i t 1 E 2 ,
E 4 = i t 1 E 1 + ( 1 t 1 2 ) 1 2 E 2 ,
E 7 = ( 1 t 2 2 ) 1 2 E 5 + i t 2 E 6 ,
E 8 = i t 2 E 5 + ( 1 t 2 2 ) 1 2 E 6 ,
E 5 = E 4 exp ( α 1 L 2 4 ) exp ( i ϕ 1 2 ) ,
E 2 = E 7 exp ( α 1 L 2 4 ) exp ( i ϕ 1 2 ) ,
E 6 = E 8 exp ( α 2 L 2 2 ) exp ( i ϕ 2 ) ,
E 3 E 1 2 = r 1 r 1 r 2 p 2 q 2 r 2 p 1 q 1 + p 1 q 1 p 2 q 2 1 r 2 p 2 q 2 r 1 r 2 p 1 q 1 + r 1 p 1 q 1 p 2 q 2 2 ,

Metrics