Abstract

The photosynthesis, transfer, and storage of starch are the most important biogenic processes occurring in plants. In order to observe the colorless and transparent starch granules in a plant, a chemical pretreatment such as staining of the starch is currently required, which seriously damages the tissue cells in the plant. We demonstrate that nondestructive chemical analysis of starch granules in a plant can be performed by using optical second-harmonic and sum-frequency microscopy. These techniques for in vivo analysis will provide extremely useful information about saccharides in a plant and can be extended to the analysis of many other materials, from living tissue to semiconductors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, 'Detection of starch granules in a living plant by optical second harmonic microscopy,' J. Lumin. 87-89, 824-826 (2000).
    [CrossRef]
  2. G. Mizutani and H. Sano, 'Starch image in living water plants observed by optical second harmonic microscopy,' in Science, Technology and Education of Microscopy: an Overview, A.Mendez-Vilas, ed. (FORMATEX, Badajoz, 2003), pp. 499-504.
  3. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  4. G. Mizutani, T. Koyama, S. Tomizawa, and H. Sano, 'Distinction between some saccharides in scattered optical sum frequency intensity images,' Spectrochim. Acta, Part A 62, 845-849 (2005).
    [CrossRef]
  5. M. Flörsheimer, C. Brillert, and H. Fuchs, 'Chemical imaging of interfaces by sum-frequency generation,' Mater. Sci. Eng., C 8-9, 335-341 (1999).
    [CrossRef]
  6. K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, 'Chemical imaging of interfaces by sum-frequency generation microscopy: Application to patterned self-assembled monolayers,' Appl. Phys. Lett. 83, 3830-3832 (2003).
    [CrossRef]
  7. R. Takabatake and T. Shimmen, 'Inhibition of electrogenesis by aluminum in characean cells,' Plant Cell Physiol. 38, 1264-1271 (1997).
  8. H. Sano, T. Shimizu, G. Mizutani, and S. Ushioda, 'Images of cleaved GaAs(110) surfaces observed with a reflection optical second harmonic microscope,' J. Appl. Phys. 87, 1614-1619 (2000).
    [CrossRef]
  9. T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, 'Analysis of the native structure of starch granules with X-ray microfocus diffraction,' Macromolecules 30, 3813-3820 (1997).
    [CrossRef]
  10. S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
    [CrossRef] [PubMed]
  11. A. Buléon, P. Colonna, V. Planchot, and S. Ball, 'Starch granules: structure and biosynthesis,' Int. J. Biol. Macromol. 23, 85-112 (1998).
    [CrossRef] [PubMed]
  12. P. J. Treado and M. D. Morris, 'Infrared and Raman spectroscopic imaging,' Appl. Spectrosc. Rev. 29, 1-38 (1994).
    [CrossRef]

2005 (1)

G. Mizutani, T. Koyama, S. Tomizawa, and H. Sano, 'Distinction between some saccharides in scattered optical sum frequency intensity images,' Spectrochim. Acta, Part A 62, 845-849 (2005).
[CrossRef]

2003 (1)

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, 'Chemical imaging of interfaces by sum-frequency generation microscopy: Application to patterned self-assembled monolayers,' Appl. Phys. Lett. 83, 3830-3832 (2003).
[CrossRef]

2000 (2)

H. Sano, T. Shimizu, G. Mizutani, and S. Ushioda, 'Images of cleaved GaAs(110) surfaces observed with a reflection optical second harmonic microscope,' J. Appl. Phys. 87, 1614-1619 (2000).
[CrossRef]

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, 'Detection of starch granules in a living plant by optical second harmonic microscopy,' J. Lumin. 87-89, 824-826 (2000).
[CrossRef]

1999 (1)

M. Flörsheimer, C. Brillert, and H. Fuchs, 'Chemical imaging of interfaces by sum-frequency generation,' Mater. Sci. Eng., C 8-9, 335-341 (1999).
[CrossRef]

1998 (1)

A. Buléon, P. Colonna, V. Planchot, and S. Ball, 'Starch granules: structure and biosynthesis,' Int. J. Biol. Macromol. 23, 85-112 (1998).
[CrossRef] [PubMed]

1997 (2)

T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, 'Analysis of the native structure of starch granules with X-ray microfocus diffraction,' Macromolecules 30, 3813-3820 (1997).
[CrossRef]

R. Takabatake and T. Shimmen, 'Inhibition of electrogenesis by aluminum in characean cells,' Plant Cell Physiol. 38, 1264-1271 (1997).

1996 (1)

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

1994 (1)

P. J. Treado and M. D. Morris, 'Infrared and Raman spectroscopic imaging,' Appl. Spectrosc. Rev. 29, 1-38 (1994).
[CrossRef]

Ball, S.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, 'Starch granules: structure and biosynthesis,' Int. J. Biol. Macromol. 23, 85-112 (1998).
[CrossRef] [PubMed]

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Bittner, A. M.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, 'Chemical imaging of interfaces by sum-frequency generation microscopy: Application to patterned self-assembled monolayers,' Appl. Phys. Lett. 83, 3830-3832 (2003).
[CrossRef]

Brillert, C.

M. Flörsheimer, C. Brillert, and H. Fuchs, 'Chemical imaging of interfaces by sum-frequency generation,' Mater. Sci. Eng., C 8-9, 335-341 (1999).
[CrossRef]

Buléon, A.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, 'Starch granules: structure and biosynthesis,' Int. J. Biol. Macromol. 23, 85-112 (1998).
[CrossRef] [PubMed]

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Butler, M. F.

T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, 'Analysis of the native structure of starch granules with X-ray microfocus diffraction,' Macromolecules 30, 3813-3820 (1997).
[CrossRef]

Colonna, P.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, 'Starch granules: structure and biosynthesis,' Int. J. Biol. Macromol. 23, 85-112 (1998).
[CrossRef] [PubMed]

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Donald, A. M.

T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, 'Analysis of the native structure of starch granules with X-ray microfocus diffraction,' Macromolecules 30, 3813-3820 (1997).
[CrossRef]

Flörsheimer, M.

M. Flörsheimer, C. Brillert, and H. Fuchs, 'Chemical imaging of interfaces by sum-frequency generation,' Mater. Sci. Eng., C 8-9, 335-341 (1999).
[CrossRef]

Fuchs, H.

M. Flörsheimer, C. Brillert, and H. Fuchs, 'Chemical imaging of interfaces by sum-frequency generation,' Mater. Sci. Eng., C 8-9, 335-341 (1999).
[CrossRef]

Guan, H.

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Heidelbach, F.

T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, 'Analysis of the native structure of starch granules with X-ray microfocus diffraction,' Macromolecules 30, 3813-3820 (1997).
[CrossRef]

Hoffmann, D. M. P.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, 'Chemical imaging of interfaces by sum-frequency generation microscopy: Application to patterned self-assembled monolayers,' Appl. Phys. Lett. 83, 3830-3832 (2003).
[CrossRef]

Hopkinson, I.

T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, 'Analysis of the native structure of starch granules with X-ray microfocus diffraction,' Macromolecules 30, 3813-3820 (1997).
[CrossRef]

James, M.

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Keeling, P.

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Kern, K.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, 'Chemical imaging of interfaces by sum-frequency generation microscopy: Application to patterned self-assembled monolayers,' Appl. Phys. Lett. 83, 3830-3832 (2003).
[CrossRef]

Koyama, T.

G. Mizutani, T. Koyama, S. Tomizawa, and H. Sano, 'Distinction between some saccharides in scattered optical sum frequency intensity images,' Spectrochim. Acta, Part A 62, 845-849 (2005).
[CrossRef]

Kuhnke, K.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, 'Chemical imaging of interfaces by sum-frequency generation microscopy: Application to patterned self-assembled monolayers,' Appl. Phys. Lett. 83, 3830-3832 (2003).
[CrossRef]

Mizutani, G.

G. Mizutani, T. Koyama, S. Tomizawa, and H. Sano, 'Distinction between some saccharides in scattered optical sum frequency intensity images,' Spectrochim. Acta, Part A 62, 845-849 (2005).
[CrossRef]

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, 'Detection of starch granules in a living plant by optical second harmonic microscopy,' J. Lumin. 87-89, 824-826 (2000).
[CrossRef]

H. Sano, T. Shimizu, G. Mizutani, and S. Ushioda, 'Images of cleaved GaAs(110) surfaces observed with a reflection optical second harmonic microscope,' J. Appl. Phys. 87, 1614-1619 (2000).
[CrossRef]

G. Mizutani and H. Sano, 'Starch image in living water plants observed by optical second harmonic microscopy,' in Science, Technology and Education of Microscopy: an Overview, A.Mendez-Vilas, ed. (FORMATEX, Badajoz, 2003), pp. 499-504.

Morris, M. D.

P. J. Treado and M. D. Morris, 'Infrared and Raman spectroscopic imaging,' Appl. Spectrosc. Rev. 29, 1-38 (1994).
[CrossRef]

Mouille, G.

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Myers, A.

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Planchot, V.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, 'Starch granules: structure and biosynthesis,' Int. J. Biol. Macromol. 23, 85-112 (1998).
[CrossRef] [PubMed]

Preiss, J.

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Riekel, C.

T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, 'Analysis of the native structure of starch granules with X-ray microfocus diffraction,' Macromolecules 30, 3813-3820 (1997).
[CrossRef]

Sakamoto, M.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, 'Detection of starch granules in a living plant by optical second harmonic microscopy,' J. Lumin. 87-89, 824-826 (2000).
[CrossRef]

Sano, H.

G. Mizutani, T. Koyama, S. Tomizawa, and H. Sano, 'Distinction between some saccharides in scattered optical sum frequency intensity images,' Spectrochim. Acta, Part A 62, 845-849 (2005).
[CrossRef]

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, 'Detection of starch granules in a living plant by optical second harmonic microscopy,' J. Lumin. 87-89, 824-826 (2000).
[CrossRef]

H. Sano, T. Shimizu, G. Mizutani, and S. Ushioda, 'Images of cleaved GaAs(110) surfaces observed with a reflection optical second harmonic microscope,' J. Appl. Phys. 87, 1614-1619 (2000).
[CrossRef]

G. Mizutani and H. Sano, 'Starch image in living water plants observed by optical second harmonic microscopy,' in Science, Technology and Education of Microscopy: an Overview, A.Mendez-Vilas, ed. (FORMATEX, Badajoz, 2003), pp. 499-504.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Shimizu, T.

H. Sano, T. Shimizu, G. Mizutani, and S. Ushioda, 'Images of cleaved GaAs(110) surfaces observed with a reflection optical second harmonic microscope,' J. Appl. Phys. 87, 1614-1619 (2000).
[CrossRef]

Shimmen, T.

R. Takabatake and T. Shimmen, 'Inhibition of electrogenesis by aluminum in characean cells,' Plant Cell Physiol. 38, 1264-1271 (1997).

Sonoda, Y.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, 'Detection of starch granules in a living plant by optical second harmonic microscopy,' J. Lumin. 87-89, 824-826 (2000).
[CrossRef]

Takabatake, R.

R. Takabatake and T. Shimmen, 'Inhibition of electrogenesis by aluminum in characean cells,' Plant Cell Physiol. 38, 1264-1271 (1997).

Takahashi, T.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, 'Detection of starch granules in a living plant by optical second harmonic microscopy,' J. Lumin. 87-89, 824-826 (2000).
[CrossRef]

Tomizawa, S.

G. Mizutani, T. Koyama, S. Tomizawa, and H. Sano, 'Distinction between some saccharides in scattered optical sum frequency intensity images,' Spectrochim. Acta, Part A 62, 845-849 (2005).
[CrossRef]

Treado, P. J.

P. J. Treado and M. D. Morris, 'Infrared and Raman spectroscopic imaging,' Appl. Spectrosc. Rev. 29, 1-38 (1994).
[CrossRef]

Ushioda, S.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, 'Detection of starch granules in a living plant by optical second harmonic microscopy,' J. Lumin. 87-89, 824-826 (2000).
[CrossRef]

H. Sano, T. Shimizu, G. Mizutani, and S. Ushioda, 'Images of cleaved GaAs(110) surfaces observed with a reflection optical second harmonic microscope,' J. Appl. Phys. 87, 1614-1619 (2000).
[CrossRef]

Waigh, T. A.

T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, 'Analysis of the native structure of starch granules with X-ray microfocus diffraction,' Macromolecules 30, 3813-3820 (1997).
[CrossRef]

Wu, X. C.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, 'Chemical imaging of interfaces by sum-frequency generation microscopy: Application to patterned self-assembled monolayers,' Appl. Phys. Lett. 83, 3830-3832 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, 'Chemical imaging of interfaces by sum-frequency generation microscopy: Application to patterned self-assembled monolayers,' Appl. Phys. Lett. 83, 3830-3832 (2003).
[CrossRef]

Appl. Spectrosc. Rev. (1)

P. J. Treado and M. D. Morris, 'Infrared and Raman spectroscopic imaging,' Appl. Spectrosc. Rev. 29, 1-38 (1994).
[CrossRef]

Cell (1)

S. Ball, H. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buléon, P. Colonna, and J. Preiss, 'From glycogen to amylopectin: a model for the biogenesis of the plant starch granule,' Cell 86, 349-354 (1996).
[CrossRef] [PubMed]

Int. J. Biol. Macromol. (1)

A. Buléon, P. Colonna, V. Planchot, and S. Ball, 'Starch granules: structure and biosynthesis,' Int. J. Biol. Macromol. 23, 85-112 (1998).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

H. Sano, T. Shimizu, G. Mizutani, and S. Ushioda, 'Images of cleaved GaAs(110) surfaces observed with a reflection optical second harmonic microscope,' J. Appl. Phys. 87, 1614-1619 (2000).
[CrossRef]

J. Lumin. (1)

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, 'Detection of starch granules in a living plant by optical second harmonic microscopy,' J. Lumin. 87-89, 824-826 (2000).
[CrossRef]

Macromolecules (1)

T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, 'Analysis of the native structure of starch granules with X-ray microfocus diffraction,' Macromolecules 30, 3813-3820 (1997).
[CrossRef]

Mater. Sci. Eng., C (1)

M. Flörsheimer, C. Brillert, and H. Fuchs, 'Chemical imaging of interfaces by sum-frequency generation,' Mater. Sci. Eng., C 8-9, 335-341 (1999).
[CrossRef]

Plant Cell Physiol. (1)

R. Takabatake and T. Shimmen, 'Inhibition of electrogenesis by aluminum in characean cells,' Plant Cell Physiol. 38, 1264-1271 (1997).

Spectrochim. Acta, Part A (1)

G. Mizutani, T. Koyama, S. Tomizawa, and H. Sano, 'Distinction between some saccharides in scattered optical sum frequency intensity images,' Spectrochim. Acta, Part A 62, 845-849 (2005).
[CrossRef]

Other (2)

G. Mizutani and H. Sano, 'Starch image in living water plants observed by optical second harmonic microscopy,' in Science, Technology and Education of Microscopy: an Overview, A.Mendez-Vilas, ed. (FORMATEX, Badajoz, 2003), pp. 499-504.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Nonlinear optical images of a water plant. (a) Global photograph of Chara fibrosa. (b) Microphotograph and (c) SH intensity image of living Chara fibrosa with an oogonium (indicated by an arrow) and an antheridium in water. (d) Higher-order structure of starch consisting of D-glucopyranose units. (e) Microphotograph and (f,g) SF intensity images of dry Chara fibrosa with an oogonium in air. The wavenumbers of incident IR light for the SF images are 2905 cm 1 in (f) and 2930 cm 1 in (g). The polarizations of the incident infrared and visible beams were parallel to each other for the SF measurement. All scale bars in the images are 200 μ m .

Fig. 2
Fig. 2

SF intensity spectra of the C-H stretching vibrational mode. (a) The whole area, (b) spot A [see Figs. 1f, 1g] of an oogonium of Chara fibrosa, (c) amylopectin, (d) amylose, (e) glucose, (f) β-cyclodextrin. The polarizations of the incident infrared and visible beams were parallel to each other for the SF measurements.

Metrics