Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling radiation characteristics of semitransparent media containing bubbles or particles

Not Accessible

Your library or personal account may give you access

Abstract

Modeling of radiation characteristics of semitransparent media containing particles or bubbles in the independent scattering limit is examined. The existing radiative properties models of a single particle in an absorbing medium using the approaches based on (1) the classical Mie theory neglecting absorption by the matrix, (2) the far field approximation, and (3) the near field approximation are reviewed. Comparison between models and experimental measurements are carried out not only for the radiation characteristics but also for hemispherical transmittance and reflectance of porous fused quartz. Large differences are found among the three models predicting the bubble radiative properties when the matrix is strongly absorbing and/or the bubbles are optically large. However, these disagreements are masked by the matrix absorption during calculation of radiation characteristics of the participating medium. It is shown that all three approaches can be used for radiative transfer calculations in an absorbing matrix containing bubbles.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Measurements of radiation characteristics of fused quartz containing bubbles

Dominique Baillis, Laurent Pilon, Harifidy Randrianalisoa, Rafael Gomez, and Raymond Viskanta
J. Opt. Soc. Am. A 21(1) 149-159 (2004)

Efficiency factors and radiation characteristics of spherical scatterers in an absorbing medium

Juan Yin and Laurent Pilon
J. Opt. Soc. Am. A 23(11) 2784-2796 (2006)

Use of Mie theory to analyze experimental data to identify infrared properties of fused quartz containing bubbles

Leonid Dombrovsky, Jaona Randrianalisoa, Dominique Baillis, and Laurent Pilon
Appl. Opt. 44(33) 7021-7031 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (25)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved