Abstract

The field generated by scattering of light from a quasi-homogeneous source on a quasi-homogeneous, random medium is investigated. It is found that, within the accuracy of the first-order Born approximation, the far field satisfies two reciprocity relations (sometimes called uncertainty relations). One of them implies that the spectral density (or spectral intensity) is proportional to the convolution of the spectral density of the source and the spatial Fourier transform of the correlation coefficient of the scattering potential. The other implies that the spectral degree of coherence of the far field is proportional to the convolution of the correlation coefficient of the source and the spatial Fourier transform of the strength of the scattering potential. While the case we consider might seem restrictive, it is actually quite general. For instance, the quasi-homogeneous source model can be used to describe the generation of beams with different coherence properties and different angular spreads. In addition, the quasi-homogeneous scattering model adequately describes a wide class of turbulent media, including a stratified, turbulent atmosphere and confined plasmas.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription