Abstract

The non-Hermitian operators of the ideal nonorthogonal multilayer optical polarizers are spectrally analyzed in the framework of skew-angular biorthonormal vector bases. It is shown that these polarizers correspond to skew projectors and their operators are generated by skew projectors, exactly as the canonical ideal polarizers correspond to Hermitian projectors. Thus the common feature of all the polarizers (Hermitian and non-Hermitian) is that their “nuclei” are (orthogonal or skew) projectors—the generating projectors. It is shown that if these nonorthogonal polarizers are looked upon as variable devices, two kinds of degeneracy may occur for suitable values of the inner parameter of the device: The corresponding operators may become normal (more precisely, Hermitian) or, on the contrary, very pathological—defective and singular. In the first case their eigenvectors and biorthogonal conjugate eigenvectors collapse into a unique pair of eigenvectors; in the second case their eigenvectors (as well as their biorthogonal conjugates) collapse into a single vector.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pauli algebraic forms of normal and nonnormal operators

Tiberiu Tudor and Aurelian Gheondea
J. Opt. Soc. Am. A 24(1) 204-210 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (79)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription