Abstract

An assessment is presented of the integrated genetic-algorithm strategy based on a numerically computed Green’s function for subsurface inverse scattering problems arising in nondestructive evaluation/testing industrial applications. To show the effectiveness and current limitations of such a microwave technique in dealing with various scenarios characterized by lossless and lossy host media as well as in noisy environments, several numerical experiments are considered. The results obtained confirm the effectiveness of the approach in fully exploiting the available a priori information through a suitable scattering model, which allows a nonnegligible enhancement of the reconstruction accuracy as well as a reduction of the overall computational burden with respect to standard imaging approaches.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetic subsurface prospecting by a multifocusing inexact Newton method within the second-order Born approximation

Marco Salucci, Giacomo Oliveri, Andrea Randazzo, Matteo Pastorino, and Andrea Massa
J. Opt. Soc. Am. A 31(6) 1167-1179 (2014)

Electromagnetic imaging of separable obstacle problem

Xiuzhu Ye, Rencheng Song, Krishna Agarwal, and Xudong Chen
Opt. Express 20(3) 2206-2219 (2012)

Nonlinear inverse scattering methods for thermal-wave slice tomography: a wavelet domain approach

Eric L. Miller, Lena Nicolaides, and Andreas Mandelis
J. Opt. Soc. Am. A 15(6) 1545-1556 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription