Abstract

The outcoupling of light in organic light-emitting devices is one of the limiting parameters for obtaining a high external efficiency. A simple geometrical model is presented that allows one to estimate the importance of optical parameters such as mirror reflectivity, scattering probability, and device structure. The model allows the derivation of analytical expressions for the outcoupling efficiency in some simplified cases.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
    [CrossRef]
  2. N. Takada, T. Tsutsui, and S. Saito, "Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-macrocavity structure," Appl. Phys. Lett. 63, 2032-2034 (1993).
    [CrossRef]
  3. T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
    [CrossRef]
  4. K. Neyts, P. De Visschere, D. Fork, and G. Anderson, "Semitransparent metal or distributed Bragg reflector for wide-viewing-angle organic light-emitting-diode micro-cavities," J. Opt. Soc. Am. B 17, 114-119 (2000).
    [CrossRef]
  5. H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," J. Appl. Phys. 94, 5290-5296 (2003).
    [CrossRef]
  6. N. K. Patel, S. Cina, and J. H. Burroughes, "High-efficiency organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
    [CrossRef]
  7. J. J. Shiang and A. R. Duggal, "Application of radiative transport theory to light extraction from organic light emitting diodes," J. Appl. Phys. 95, 2880-2888 (2004).
    [CrossRef]
  8. J. J. Shiang, T. J. Faircloth, and A. R. Duggal, "Experimental demonstration of increased organic light emitting device output via volumetric light scattering," J. Appl. Phys. 95, 2889-2895 (2004).
    [CrossRef]
  9. K. Neyts, "Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films," Appl. Surf. Sci. 244, 517-523 (2005).
    [CrossRef]
  10. N. Biyikli, I. Kimukin, B. Butun, O. Aytür, and E. Ozbay, "ITO-Schottky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Sel. Top. Quantum Electron. 10, 759-765 (2004).
    [CrossRef]
  11. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, andM. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. (Weinheim) 13, 1149-1152 (2001).
    [CrossRef]

2005 (1)

K. Neyts, "Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films," Appl. Surf. Sci. 244, 517-523 (2005).
[CrossRef]

2004 (3)

N. Biyikli, I. Kimukin, B. Butun, O. Aytür, and E. Ozbay, "ITO-Schottky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Sel. Top. Quantum Electron. 10, 759-765 (2004).
[CrossRef]

J. J. Shiang and A. R. Duggal, "Application of radiative transport theory to light extraction from organic light emitting diodes," J. Appl. Phys. 95, 2880-2888 (2004).
[CrossRef]

J. J. Shiang, T. J. Faircloth, and A. R. Duggal, "Experimental demonstration of increased organic light emitting device output via volumetric light scattering," J. Appl. Phys. 95, 2889-2895 (2004).
[CrossRef]

2003 (1)

H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

2002 (1)

N. K. Patel, S. Cina, and J. H. Burroughes, "High-efficiency organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

2001 (1)

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, andM. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. (Weinheim) 13, 1149-1152 (2001).
[CrossRef]

2000 (1)

1995 (1)

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
[CrossRef]

1993 (2)

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

N. Takada, T. Tsutsui, and S. Saito, "Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-macrocavity structure," Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

Anderson, G.

Aytür, O.

N. Biyikli, I. Kimukin, B. Butun, O. Aytür, and E. Ozbay, "ITO-Schottky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Sel. Top. Quantum Electron. 10, 759-765 (2004).
[CrossRef]

Beierlein, T.

H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

Biyikli, N.

N. Biyikli, I. Kimukin, B. Butun, O. Aytür, and E. Ozbay, "ITO-Schottky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Sel. Top. Quantum Electron. 10, 759-765 (2004).
[CrossRef]

Bradley, D. D. C.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
[CrossRef]

Burroughes, J. H.

N. K. Patel, S. Cina, and J. H. Burroughes, "High-efficiency organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

Butun, B.

N. Biyikli, I. Kimukin, B. Butun, O. Aytür, and E. Ozbay, "ITO-Schottky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Sel. Top. Quantum Electron. 10, 759-765 (2004).
[CrossRef]

Cina, S.

N. K. Patel, S. Cina, and J. H. Burroughes, "High-efficiency organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

De Visschere, P.

Duggal, A. R.

J. J. Shiang and A. R. Duggal, "Application of radiative transport theory to light extraction from organic light emitting diodes," J. Appl. Phys. 95, 2880-2888 (2004).
[CrossRef]

J. J. Shiang, T. J. Faircloth, and A. R. Duggal, "Experimental demonstration of increased organic light emitting device output via volumetric light scattering," J. Appl. Phys. 95, 2889-2895 (2004).
[CrossRef]

Faircloth, T. J.

J. J. Shiang, T. J. Faircloth, and A. R. Duggal, "Experimental demonstration of increased organic light emitting device output via volumetric light scattering," J. Appl. Phys. 95, 2889-2895 (2004).
[CrossRef]

Fisher, T. A.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
[CrossRef]

Fork, D.

Itoh, Y.

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

Kakuta, A.

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

Karg, S.

H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

Kawano, K.

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, andM. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. (Weinheim) 13, 1149-1152 (2001).
[CrossRef]

Kimukin, I.

N. Biyikli, I. Kimukin, B. Butun, O. Aytür, and E. Ozbay, "ITO-Schottky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Sel. Top. Quantum Electron. 10, 759-765 (2004).
[CrossRef]

Lidzey, D. G.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
[CrossRef]

Nakayama, T.

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

Neyts, K.

K. Neyts, "Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films," Appl. Surf. Sci. 244, 517-523 (2005).
[CrossRef]

H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

K. Neyts, P. De Visschere, D. Fork, and G. Anderson, "Semitransparent metal or distributed Bragg reflector for wide-viewing-angle organic light-emitting-diode micro-cavities," J. Opt. Soc. Am. B 17, 114-119 (2000).
[CrossRef]

Ozbay, E.

N. Biyikli, I. Kimukin, B. Butun, O. Aytür, and E. Ozbay, "ITO-Schottky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Sel. Top. Quantum Electron. 10, 759-765 (2004).
[CrossRef]

Pate, M. A.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
[CrossRef]

Patel, N. K.

N. K. Patel, S. Cina, and J. H. Burroughes, "High-efficiency organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

Riel, H.

H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

Riess, W.

H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

Saito, S.

N. Takada, T. Tsutsui, and S. Saito, "Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-macrocavity structure," Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

Shiang, J. J.

J. J. Shiang, T. J. Faircloth, and A. R. Duggal, "Experimental demonstration of increased organic light emitting device output via volumetric light scattering," J. Appl. Phys. 95, 2889-2895 (2004).
[CrossRef]

J. J. Shiang and A. R. Duggal, "Application of radiative transport theory to light extraction from organic light emitting diodes," J. Appl. Phys. 95, 2880-2888 (2004).
[CrossRef]

Skolnik, M. S.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
[CrossRef]

Takada, N.

N. Takada, T. Tsutsui, and S. Saito, "Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-macrocavity structure," Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

Tsutsui, T.

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, andM. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. (Weinheim) 13, 1149-1152 (2001).
[CrossRef]

N. Takada, T. Tsutsui, and S. Saito, "Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-macrocavity structure," Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

Weaver, M. S.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
[CrossRef]

Whittaker, D. M.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
[CrossRef]

Yahiro, M.

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, andM. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. (Weinheim) 13, 1149-1152 (2001).
[CrossRef]

Yokogawa, H.

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, andM. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. (Weinheim) 13, 1149-1152 (2001).
[CrossRef]

Yokoyama, M.

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, andM. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. (Weinheim) 13, 1149-1152 (2001).
[CrossRef]

Adv. Mater. (Weinheim) (1)

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, andM. Yokoyama, "Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer," Adv. Mater. (Weinheim) 13, 1149-1152 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

T. Nakayama, Y. Itoh, and A. Kakuta, "Organic photo- and electroluminescent devices with double mirrors," Appl. Phys. Lett. 63, 594-595 (1993).
[CrossRef]

N. Takada, T. Tsutsui, and S. Saito, "Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-macrocavity structure," Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnik, and D. D. C. Bradley, "Electroluminescence from a conjugated polymer microcavity structure," Appl. Phys. Lett. 67, 1355-1357 (1995).
[CrossRef]

Appl. Surf. Sci. (1)

K. Neyts, "Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films," Appl. Surf. Sci. 244, 517-523 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

N. Biyikli, I. Kimukin, B. Butun, O. Aytür, and E. Ozbay, "ITO-Schottky photodiodes for high-performance detection in the UV-IR spectrum," IEEE J. Sel. Top. Quantum Electron. 10, 759-765 (2004).
[CrossRef]

N. K. Patel, S. Cina, and J. H. Burroughes, "High-efficiency organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 346-361 (2002).
[CrossRef]

J. Appl. Phys. (3)

J. J. Shiang and A. R. Duggal, "Application of radiative transport theory to light extraction from organic light emitting diodes," J. Appl. Phys. 95, 2880-2888 (2004).
[CrossRef]

J. J. Shiang, T. J. Faircloth, and A. R. Duggal, "Experimental demonstration of increased organic light emitting device output via volumetric light scattering," J. Appl. Phys. 95, 2889-2895 (2004).
[CrossRef]

H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structure of an OLED device with scattering layers in the emitting stack and in the glass substrate.

Fig. 2
Fig. 2

Illustration of light intensities going up and down for (a) a scattering layer with scattering probability s i i + 1 , (b) an interface between two materials with different refractive indices, (c) a mirror with reflectivity R.

Fig. 3
Fig. 3

Structure of an OLED device with definitions for light intensities, generation, and scattering in air, glass, and the emitting layer.

Fig. 4
Fig. 4

Simulated outcoupling efficiency η out as a function of the scattering probability in the emitting layer s e (abscissa) and the glass substrate s g (ordinate) for three values of the mirror reflectivity R for the structure of Fig. 3.

Fig. 5
Fig. 5

Structure of an OLED device with an air gap near the mirror, indicating definitions for light intensities, generation, and scattering in air, glass, and the emitting layer.

Fig. 6
Fig. 6

Simulated outcoupling efficiency η out as a function of the scattering probability in the emitting layer s e (abscissa) and the glass substrate s g (ordinate) for three values of the mirror reflectivity R for the structure of Fig. 5.

Fig. 7
Fig. 7

Simulated outcoupling efficiency η out as a function of the scattering probability in the emitting layer s e and the glass substrate s g for an OLED, including microcavity effects and angle dependences.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

η out < 1 1 1 n e 2 ,
n i sin θ i < n i + 1 .
n 1 < < n j < < n j max .
D i , j = { D i + 1 , j n j n i , n i + 1 U i , j n i + 1 < n j n i 0 n i < n j } ,
U i , j = { U i 1 , j n j n i , n i 1 D i , j n i 1 < n j n i 0 n i < n j } .
p i i + 1 , j = 1 ( n j 1 n i ) 2 1 ( n j n i ) 2 ,
j p i i + 1 , j = 1 .
D i , j = D i + 1 , j + 1 2 p i i + 1 , j G i i + 1 ,
U i + 1 , j = U i , j + 1 2 p i i + 1 , j G i i + 1 .
D i , j = ( 1 a i i + 1 s i i + 1 ) D i + 1 , j + 1 2 p i i + 1 , j G s , i i + 1 ,
U i + 1 , j = ( 1 a i i + 1 s i i + 1 ) U i , j + 1 2 p i i + 1 , j G s , i i + 1 ,
G s , i i + 1 = s i i + 1 j ( U i , j + D i + 1 , j ) .
U 1 , j = R D 1 , j .
p e , 2 = 1 1 n e 2 1 n g 2 n e 2 .
{ U e , i = 1 + R 2 p e , i G e + R D e , i , i = 1 , 2 , 3 , U g , i = 1 2 p e , i G s e + ( 1 s e ) U e , i , i = 1 , 2 , U a , 1 = 1 2 p g , 1 G s g + ( 1 s g ) U g , 1 , D e , i = 1 2 p e , i G s e + ( 1 s e ) D g , i , i = 1 , 2 , D e , 3 = ( 1 s e 2 ) p e , 3 G s e + ( 1 s e ) 2 U e , 3 , D g , 1 = 1 2 p g , 1 G s g , D g , 2 = ( 1 s g 1 2 ) p g , 2 G s g + ( 1 s g ) 2 U g , 2 , }
G s e = s e ( U e , 1 + U e , 2 + D g , 1 + D g , 2 ) + ( 2 s e s e 2 ) U e , 3 + s e 2 p e , 3 G s e ,
G s g = s g U g , 1 + ( 2 s g s g 2 ) U g , 2 + s g 2 p g , 2 G s g .
η out ( n e , n g , s e , s g , R ) = U a G e .
η out ( n e , n g , s e , s g , R ) 1 + R 2 p e , 1 + s e 1 + R 2 p e , 1 [ 2 R 1 R 1 2 ( 1 + R ) 2 1 R p e , 1 ] + s g 1 + R 2 [ ( 1 + R ) p g , 1 ( p e , 2 1 R + p e , 1 2 ) p e , 1 ] .
R crit , se 2 p e , 1 ( 1 1 p e , 1 ) 1 .
R ( η out ) 1 2 η out p e , 1 [ s e p e , 1 ( 1 p e , 1 ) + s g p g , 1 p e , 2 ] .
U e , 1 = 1 + R 2 p e , 1 G e + R D e , 1 ,
U e , i = p e , i G e + D e , i i = 2 , 3 .
( p e , 2 + p e , 3 ) G e p e , 1 G s e + p g , 1 G s g .
η out ( n e , n g , s e , s g , R ) 1 + R 2 ,
FOM = s e p e , 1 ( 1 p e , 1 ) + s g p g , 1 p e , 2 1 R ,

Metrics