Abstract

Expressions are derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model beam propagating through a paraxial ABCD system. Using the recently developed unified theory of coherence and polarization of electromagnetic beams and the ABCD matrix for gradient-index fibers, we study the changes of the spectral density, of the spectral degree of polarization, and of the spectral degree of coherence of such a beam as it travels through the fiber. Effects of material dispersion are also considered.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
State of polarization and propagation factor of a stochastic electromagnetic beam in a gradient-index fiber

Shijun Zhu, Lin Liu, Yahong Chen, and Yangjian Cai
J. Opt. Soc. Am. A 30(11) 2306-2313 (2013)

Transmission of a polychromatic electromagnetic multi-Gaussian Schell-model beam in an inhomogeneous gradient-index fiber

Serkan Sahin, Minghui Zhang, Yahong Chen, and Yangjian Cai
J. Opt. Soc. Am. A 35(9) 1604-1611 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics