Abstract

We present an adaptation of the fast Fourier factorization method to the simulation of two-dimensional (2D) photonic crystals with a third-order nonlinearity. The algorithm and its performance are detailed and illustrated via the simulation of a Kerr 2D photonic crystal. A change in the transmission spectrum at high intensity is observed. We explain why the change does not reduce to a translation (redshift) but rather consists in a deformation and why one side of the bandgap is more suited to a switching application than the other one.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffraction theory: application of the fast Fourier factorization to cylindrical devices with arbitrary cross section lighted in conical mounting

Philippe Boyer, Evgeny Popov, Michel Nevière, and Gilles Renversez
J. Opt. Soc. Am. A 23(5) 1146-1158 (2006)

Identification of competing ultrafast all-optical switching mechanisms in Si woodpile photonic crystals

Philip J. Harding, Tijmen G. Euser, and Willem L. Vos
J. Opt. Soc. Am. B 26(4) 610-619 (2009)

Staircase approximation validity for arbitrary-shaped gratings

Evgeny Popov, Michel Nevière, Boris Gralak, and Gérard Tayeb
J. Opt. Soc. Am. A 19(1) 33-42 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription