A. Khoh, G. S. Samudra, W. Yihong, T. Milster, and B.-I. Choi, "Image formation by use of the geometrical theory of diffraction," J. Opt. Soc. Am. A 21, 959-967 (2004).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, "Fast evaluation of photomask near-fields in sub-wavelength 193 nm lithography," Proc. SPIE 5377, 1528-1535 (2004).

[CrossRef]

M. S. Yeung and E. Barouch, "Limitation of the Kirchhoff boundary conditions for aerial image simulation in 157 nm optical lithography," IEEE Electron Device Lett. 21, 433-435 (2000).

[CrossRef]

C. T. Tai, "Direct integration of field equations," Electromagn. Waves : Prog. Electromagn. Res. 28, 339-359 (2000).

[CrossRef]

P. Y. Ufimtsev, "Rubinowicz and the modern theory of diffracted rays," Electromagnetics 15, 547-565 (1995).

[CrossRef]

A. K. Wong and A. R. Neureuther, "Mask topography effects in projection printing of phase-shifting masks," IEEE Trans. Electron Devices 41, 895-902 (1994).

[CrossRef]

P. Y. Ufimtsev, "Elementary edge waves and the physical theory of diffraction," Electromagnetics 11, 125-160 (1991).

[CrossRef]

K. Adam and A. R. Neureuther, "Simplified models for edge transitions in rigorous mask modeling," in Optical Microlithography XIV, C.J.Progler, ed., Proc. SPIE 4346, 331-344 (2001).

M. S. Yeung and E. Barouch, "Limitation of the Kirchhoff boundary conditions for aerial image simulation in 157 nm optical lithography," IEEE Electron Device Lett. 21, 433-435 (2000).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1987).

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, "Improving resolution in photolithography with phase shifting-mask," IEEE Trans. Electron Devices ED-29, 1828-1836 (1982).

H. J. Levinson, Principles of Lithography (SPIE, 2001).

A. K. Wong and A. R. Neureuther, "Mask topography effects in projection printing of phase-shifting masks," IEEE Trans. Electron Devices 41, 895-902 (1994).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, "Modeling oblique incidence effects in photomasks," in Optical Microlithography XIV, C.J.Progler, ed., Proc. SPIE 4000, 228-237 (2000).

K. Adam and A. R. Neureuther, "Simplified models for edge transitions in rigorous mask modeling," in Optical Microlithography XIV, C.J.Progler, ed., Proc. SPIE 4346, 331-344 (2001).

C. Pierrat and A. Wong, "The MEF revisited: Low k1 effects versus mask topography effects," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE 5040, 193-202 (2003).

T. V. Pistor, A. R. Neureuther, and R. J. Socha, "Modeling oblique incidence effects in photomasks," in Optical Microlithography XIV, C.J.Progler, ed., Proc. SPIE 4000, 228-237 (2000).

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, "Improving resolution in photolithography with phase shifting-mask," IEEE Trans. Electron Devices ED-29, 1828-1836 (1982).

T. V. Pistor, A. R. Neureuther, and R. J. Socha, "Modeling oblique incidence effects in photomasks," in Optical Microlithography XIV, C.J.Progler, ed., Proc. SPIE 4000, 228-237 (2000).

C. T. Tai, "Direct integration of field equations," Electromagn. Waves : Prog. Electromagn. Res. 28, 339-359 (2000).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, "Fast evaluation of photomask near-fields in sub-wavelength 193 nm lithography," Proc. SPIE 5377, 1528-1535 (2004).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, "Modeling of near-field effects in sub-wavelength deep ultraviolet lithography," in Future Trends of Microelectronics 2003, S.Luryi, J.Xu, and A.Zaslavsky, eds. (Wiley-IEEE, 2004), pp. 80-92.

J. Tirapu-Azpiroz, "Analysis and modeling of photomask near-fields in subwavelength deep ultraviolet lithography," Ph.D. dissertation (University of California at Los Angeles, 2004).

P. Y. Ufimtsev, "Rubinowicz and the modern theory of diffracted rays," Electromagnetics 15, 547-565 (1995).

[CrossRef]

P. Y. Ufimtsev, "Elementary edge waves and the physical theory of diffraction," Electromagnetics 11, 125-160 (1991).

[CrossRef]

P. Y. Ufimtsev, Method of Edge Waves in the Physical Theory of Diffraction (Foreign Technology Division, Air Force Systems Command, 1971).

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, "Improving resolution in photolithography with phase shifting-mask," IEEE Trans. Electron Devices ED-29, 1828-1836 (1982).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1987).

C. Pierrat and A. Wong, "The MEF revisited: Low k1 effects versus mask topography effects," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE 5040, 193-202 (2003).

A. K. Wong and A. R. Neureuther, "Mask topography effects in projection printing of phase-shifting masks," IEEE Trans. Electron Devices 41, 895-902 (1994).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, "Fast evaluation of photomask near-fields in sub-wavelength 193 nm lithography," Proc. SPIE 5377, 1528-1535 (2004).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, "Modeling of near-field effects in sub-wavelength deep ultraviolet lithography," in Future Trends of Microelectronics 2003, S.Luryi, J.Xu, and A.Zaslavsky, eds. (Wiley-IEEE, 2004), pp. 80-92.

M. S. Yeung and E. Barouch, "Limitation of the Kirchhoff boundary conditions for aerial image simulation in 157 nm optical lithography," IEEE Electron Device Lett. 21, 433-435 (2000).

[CrossRef]

C. T. Tai, "Direct integration of field equations," Electromagn. Waves : Prog. Electromagn. Res. 28, 339-359 (2000).

[CrossRef]

P. Y. Ufimtsev, "Rubinowicz and the modern theory of diffracted rays," Electromagnetics 15, 547-565 (1995).

[CrossRef]

P. Y. Ufimtsev, "Elementary edge waves and the physical theory of diffraction," Electromagnetics 11, 125-160 (1991).

[CrossRef]

M. S. Yeung and E. Barouch, "Limitation of the Kirchhoff boundary conditions for aerial image simulation in 157 nm optical lithography," IEEE Electron Device Lett. 21, 433-435 (2000).

[CrossRef]

A. K. Wong and A. R. Neureuther, "Mask topography effects in projection printing of phase-shifting masks," IEEE Trans. Electron Devices 41, 895-902 (1994).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, "Fast evaluation of photomask near-fields in sub-wavelength 193 nm lithography," Proc. SPIE 5377, 1528-1535 (2004).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, "Modeling oblique incidence effects in photomasks," in Optical Microlithography XIV, C.J.Progler, ed., Proc. SPIE 4000, 228-237 (2000).

J. Tirapu-Azpiroz and E. Yablonovitch, "Modeling of near-field effects in sub-wavelength deep ultraviolet lithography," in Future Trends of Microelectronics 2003, S.Luryi, J.Xu, and A.Zaslavsky, eds. (Wiley-IEEE, 2004), pp. 80-92.

P. Y. Ufimtsev, Method of Edge Waves in the Physical Theory of Diffraction (Foreign Technology Division, Air Force Systems Command, 1971).

K. Adam and A. R. Neureuther, "Simplified models for edge transitions in rigorous mask modeling," in Optical Microlithography XIV, C.J.Progler, ed., Proc. SPIE 4346, 331-344 (2001).

J. Tirapu-Azpiroz, "Analysis and modeling of photomask near-fields in subwavelength deep ultraviolet lithography," Ph.D. dissertation (University of California at Los Angeles, 2004).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1987).

H. J. Levinson, Principles of Lithography (SPIE, 2001).

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, "Improving resolution in photolithography with phase shifting-mask," IEEE Trans. Electron Devices ED-29, 1828-1836 (1982).

C. Pierrat and A. Wong, "The MEF revisited: Low k1 effects versus mask topography effects," in Optical Microlithography XVI, A.Yen, ed., Proc. SPIE 5040, 193-202 (2003).