Abstract

A novel three-dimensional (3D) camera is capable of providing high-precision 3D images in real time. The camera uses a diode laser to illuminate the scene, a shuttered solid-state charge-coupled device (CCD) sensor, and a simple phase detection technique based on the sensor shutter. The amplitude of the reflected signal carries the luminance information, while the phase of the signal carries range information. The system output is coded as a video signal. This camera offers significant advantages over existing technology. The precision in range is dependent only on phase shift and laser power and theoretically is far superior to existing time-of-flight laser radar systems. Other advantages are reduced size and simplicity and compact and inexpensive construction. We built a prototype that produced high-resolution images in range the (z) and xy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Faugeras, Three Dimensional Computer Vision: A Geometric Viewpoint (MIT Press, 1993).
  2. R. A. Lewis and A. R. Johnston, "A scanning laser rangefinder for a robotic vehicle," in Proceedings of the Fifth International Joint Conference on Artificial Intelligence, W.Kaufmann, ed. (Morgan Kaufmann, 1977), pp. 762-768.
  3. H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
    [CrossRef]
  4. D. Nitzan, A. E. Brain, and R. O. Duda, "The measurement and use of registered reflectance and range data in scene analysis," Proc. IEEE 65, 206-220 (1977).
    [CrossRef]
  5. B. Stann, W. Ruff, and Z. Sztankay, "Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques," Opt. Eng. (Bellingham) 35, 3270-3278 (1996).
    [CrossRef]
  6. N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, "Diode-laser random modulation cw lidar," Appl. Opt. 25, 63-67 (1986).
    [CrossRef] [PubMed]
  7. R. Lange and P. Seitz, "Solid-state, time-of-flight range camera," IEEE J. Quantum Electron. 37, 390-397 (2001).
    [CrossRef]
  8. A. Medina, "Three dimensional camera and range finder," U.S. patent 5,081,530 (Jan. 14, 1992).
  9. J. Anthes, D. Garcia, and D. Dressendorfer, "Non-scanned ladar imaging and applications," in Applied Laser Radar Technology, G.W.Kamerman and W.E.Keicher, eds., Proc. SPIE 1936, 11-22 (1993).
  10. R. Miyagawa and T. Kanade, "CCD-based range-finding sensor," IEEE Trans. Electron Devices 44, 1648-1652 (1997).
    [CrossRef]
  11. L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, and A. Simoni, "A CMOS smart pixel for active 3D vision applications," IEEE Sens. J. 4, 145-152 (2004).
    [CrossRef]
  12. A. Medina and D. Martin, "3D camera," http://www.gbt.tfo.upm.es/investigacion/3Dlowbari.html (2005).

2004 (1)

L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, and A. Simoni, "A CMOS smart pixel for active 3D vision applications," IEEE Sens. J. 4, 145-152 (2004).
[CrossRef]

2002 (1)

H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
[CrossRef]

2001 (1)

R. Lange and P. Seitz, "Solid-state, time-of-flight range camera," IEEE J. Quantum Electron. 37, 390-397 (2001).
[CrossRef]

1997 (1)

R. Miyagawa and T. Kanade, "CCD-based range-finding sensor," IEEE Trans. Electron Devices 44, 1648-1652 (1997).
[CrossRef]

1996 (1)

B. Stann, W. Ruff, and Z. Sztankay, "Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques," Opt. Eng. (Bellingham) 35, 3270-3278 (1996).
[CrossRef]

1986 (1)

1977 (1)

D. Nitzan, A. E. Brain, and R. O. Duda, "The measurement and use of registered reflectance and range data in scene analysis," Proc. IEEE 65, 206-220 (1977).
[CrossRef]

Ailisto, H.

H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
[CrossRef]

Anthes, J.

J. Anthes, D. Garcia, and D. Dressendorfer, "Non-scanned ladar imaging and applications," in Applied Laser Radar Technology, G.W.Kamerman and W.E.Keicher, eds., Proc. SPIE 1936, 11-22 (1993).

Baba, H.

Brain, A. E.

D. Nitzan, A. E. Brain, and R. O. Duda, "The measurement and use of registered reflectance and range data in scene analysis," Proc. IEEE 65, 206-220 (1977).
[CrossRef]

Dressendorfer, D.

J. Anthes, D. Garcia, and D. Dressendorfer, "Non-scanned ladar imaging and applications," in Applied Laser Radar Technology, G.W.Kamerman and W.E.Keicher, eds., Proc. SPIE 1936, 11-22 (1993).

Duda, R. O.

D. Nitzan, A. E. Brain, and R. O. Duda, "The measurement and use of registered reflectance and range data in scene analysis," Proc. IEEE 65, 206-220 (1977).
[CrossRef]

Faugeras, O.

O. Faugeras, Three Dimensional Computer Vision: A Geometric Viewpoint (MIT Press, 1993).

Garcia, D.

J. Anthes, D. Garcia, and D. Dressendorfer, "Non-scanned ladar imaging and applications," in Applied Laser Radar Technology, G.W.Kamerman and W.E.Keicher, eds., Proc. SPIE 1936, 11-22 (1993).

Gonzo, L.

L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, and A. Simoni, "A CMOS smart pixel for active 3D vision applications," IEEE Sens. J. 4, 145-152 (2004).
[CrossRef]

Gottardi, M.

L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, and A. Simoni, "A CMOS smart pixel for active 3D vision applications," IEEE Sens. J. 4, 145-152 (2004).
[CrossRef]

Heikkinen, V.

H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
[CrossRef]

Johnston, A. R.

R. A. Lewis and A. R. Johnston, "A scanning laser rangefinder for a robotic vehicle," in Proceedings of the Fifth International Joint Conference on Artificial Intelligence, W.Kaufmann, ed. (Morgan Kaufmann, 1977), pp. 762-768.

Kanade, T.

R. Miyagawa and T. Kanade, "CCD-based range-finding sensor," IEEE Trans. Electron Devices 44, 1648-1652 (1997).
[CrossRef]

Koskinen, M.

H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
[CrossRef]

Kostamovaara, J.

H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
[CrossRef]

Lange, R.

R. Lange and P. Seitz, "Solid-state, time-of-flight range camera," IEEE J. Quantum Electron. 37, 390-397 (2001).
[CrossRef]

Lewis, R. A.

R. A. Lewis and A. R. Johnston, "A scanning laser rangefinder for a robotic vehicle," in Proceedings of the Fifth International Joint Conference on Artificial Intelligence, W.Kaufmann, ed. (Morgan Kaufmann, 1977), pp. 762-768.

Mantiniemi, A.

H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
[CrossRef]

Martin, D.

A. Medina and D. Martin, "3D camera," http://www.gbt.tfo.upm.es/investigacion/3Dlowbari.html (2005).

Medina, A.

A. Medina and D. Martin, "3D camera," http://www.gbt.tfo.upm.es/investigacion/3Dlowbari.html (2005).

A. Medina, "Three dimensional camera and range finder," U.S. patent 5,081,530 (Jan. 14, 1992).

Mitikka, R.

H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
[CrossRef]

Miyagawa, R.

R. Miyagawa and T. Kanade, "CCD-based range-finding sensor," IEEE Trans. Electron Devices 44, 1648-1652 (1997).
[CrossRef]

Miyllyia, R.

H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
[CrossRef]

Nitzan, D.

D. Nitzan, A. E. Brain, and R. O. Duda, "The measurement and use of registered reflectance and range data in scene analysis," Proc. IEEE 65, 206-220 (1977).
[CrossRef]

Ruff, W.

B. Stann, W. Ruff, and Z. Sztankay, "Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques," Opt. Eng. (Bellingham) 35, 3270-3278 (1996).
[CrossRef]

Sakurai, K.

Seitz, P.

R. Lange and P. Seitz, "Solid-state, time-of-flight range camera," IEEE J. Quantum Electron. 37, 390-397 (2001).
[CrossRef]

Simoni, A.

L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, and A. Simoni, "A CMOS smart pixel for active 3D vision applications," IEEE Sens. J. 4, 145-152 (2004).
[CrossRef]

Stann, B.

B. Stann, W. Ruff, and Z. Sztankay, "Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques," Opt. Eng. (Bellingham) 35, 3270-3278 (1996).
[CrossRef]

Stoppa, D.

L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, and A. Simoni, "A CMOS smart pixel for active 3D vision applications," IEEE Sens. J. 4, 145-152 (2004).
[CrossRef]

Sztankay, Z.

B. Stann, W. Ruff, and Z. Sztankay, "Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques," Opt. Eng. (Bellingham) 35, 3270-3278 (1996).
[CrossRef]

Takeuchi, N.

Ueno, T.

Viarani, L.

L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, and A. Simoni, "A CMOS smart pixel for active 3D vision applications," IEEE Sens. J. 4, 145-152 (2004).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. Lange and P. Seitz, "Solid-state, time-of-flight range camera," IEEE J. Quantum Electron. 37, 390-397 (2001).
[CrossRef]

IEEE Sens. J. (1)

L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, and A. Simoni, "A CMOS smart pixel for active 3D vision applications," IEEE Sens. J. 4, 145-152 (2004).
[CrossRef]

IEEE Trans. Electron Devices (1)

R. Miyagawa and T. Kanade, "CCD-based range-finding sensor," IEEE Trans. Electron Devices 44, 1648-1652 (1997).
[CrossRef]

J. Opt. (1)

H. Ailisto, V. Heikkinen, R. Mitikka, R. Miyllyia, J. Kostamovaara, A. Mantiniemi, and M. Koskinen, "Scannerless imaging pulsed-laser range finding," J. Opt. 4, S337-S346 (2002).
[CrossRef]

Opt. Eng. (Bellingham) (1)

B. Stann, W. Ruff, and Z. Sztankay, "Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques," Opt. Eng. (Bellingham) 35, 3270-3278 (1996).
[CrossRef]

Proc. IEEE (1)

D. Nitzan, A. E. Brain, and R. O. Duda, "The measurement and use of registered reflectance and range data in scene analysis," Proc. IEEE 65, 206-220 (1977).
[CrossRef]

Other (5)

O. Faugeras, Three Dimensional Computer Vision: A Geometric Viewpoint (MIT Press, 1993).

R. A. Lewis and A. R. Johnston, "A scanning laser rangefinder for a robotic vehicle," in Proceedings of the Fifth International Joint Conference on Artificial Intelligence, W.Kaufmann, ed. (Morgan Kaufmann, 1977), pp. 762-768.

A. Medina, "Three dimensional camera and range finder," U.S. patent 5,081,530 (Jan. 14, 1992).

J. Anthes, D. Garcia, and D. Dressendorfer, "Non-scanned ladar imaging and applications," in Applied Laser Radar Technology, G.W.Kamerman and W.E.Keicher, eds., Proc. SPIE 1936, 11-22 (1993).

A. Medina and D. Martin, "3D camera," http://www.gbt.tfo.upm.es/investigacion/3Dlowbari.html (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of the 3D camera. Light pulse (arrows) emitted by the laser (top left) is recorded in part by the shuttered camera (below laser) after reflecting off the scene objects (right); the part recorded is related to the depth of the objects and is displayed in the monitor (bottom) in several ways.

Fig. 2
Fig. 2

Principle of detection of phase. Light pulse of duration τ (shaded) reflected by a near object arrives to the camera at a time T a shorter than the time of arrival of light reflected by the far object T b . The photons recorded in the pixels corresponding to the near object (light-shaded N 1 a ) are less than for the far object (light-shaded N 1 b ) when a shutter allows light at the time indicated by the thick line. The time axis is denoted as t. The vertical axis is the light recorded as a photoelectron count. The dark-shaded area represents the light rejected, referred to as N 2 in the text.

Fig. 3
Fig. 3

Theoretical range curve for a Gaussian pulse (solid line). Dotted curve is the measured range from the actual camera. The horizontal axis denotes delay T in nanoseconds.

Fig. 4
Fig. 4

Sample reflectivity image ( N ) and range image ( N 1 N ) coded and calibrated with a color scale where the numbers indicate distance from the camera in meters.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

p ( t ) = ρ p e ( t T ) ,
N 1 = p ( t ) W ( t ) d t .
W ( t ) = { Γ if t T R 1 + ( Γ 1 ) exp ( α ( t T R ) ) , if t > T R . }
r = N N 1 N = 1 N 1 N 0 r 1 .
p e ( t ) = p o exp ( t 2 2 τ 2 ) ,
N 1 = ρ p o [ T R exp ( ( t T ) 2 2 τ 2 ) Γ d t + T R exp ( ( t T ) 2 2 τ 2 ) ( 1 + ( Γ 1 ) exp ( α ( t R ) ) ) d t ] .
N 1 = ρ p o τ π 2 [ [ Γ + 1 + ( 1 Γ ) erf ( t o 2 τ ) exp ( α 2 τ 2 2 ) exp ( α t o ) ( 1 + erf ( t o 2 τ α τ 2 ) ) ] ] ,
erf ( x ) = 2 π 0 x exp ( t 2 ) d t .
N = p ( t ) d t ,
N = k ρ p o exp ( ( t T ) 2 2 τ 2 ) d t = k ρ p o 2 π τ .
r = 1 1 2 [ Γ + 1 + ( 1 Γ ) [ erf ( t o 2 τ ) exp ( α 2 τ 2 2 ) exp ( α t o ) ( 1 + erf ( t o 2 τ α τ 2 ) ) ] ] .
z = R 2 N ( N 2 N 1 ) + R 2 ,
σ N 1 = N 1 for N 1 ,
σ N 2 = N 2 for N 2 .
σ N 2 N 1 = σ N 1 2 + σ N 2 2 = N 1 + N 2 = N .
σ z = R 2 N σ N 2 N 1 = R 2 N N .
σ z R = N 2 N = 10 6 2 × 10 6 = 5 × 10 4 .
Ω 2 π = π D 2 4 r 2 2 π = 1 8 ( D r ) 2 ,
E = N h ν 1 8 ( D r ) 2 η a δ ( joules ) ,
P = E nm T ( watts ) ,

Metrics