Abstract

The interocular symmetry of the high-order corneal wavefront aberration (WA) in a population of myopic eyes was analyzed before and after photorefractive keratectomy (PRK). The preoperative and one-year postoperative corneal aberration data (from third to seventh Zernike orders) for 4- and 7-mm pupils from right and left eyes were averaged after correcting for the effects of enantiomorphism to test for mirror symmetry. Also, the mean corneal point-spread function (PSF) for right and left eyes was calculated. Preoperatively, a moderate and high degree of correlation in the high-order corneal WA between eyes was found for 4- and 7-mm pupils, respectively. Myopic PRK did not significantly change the interocular symmetry of corneal high-order aberrations. No discernible differences in the orientation PSF between eyes were observed one year after surgery in comparison with the preoperative state over the two analyzed pupils.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. N. Thibos, "The prospects for perfect vision," J. Refract. Surg. 16, S540-S546 (2000).
    [PubMed]
  2. R. A. Applegate, L. N. Thibos, and G. Hilmantel, "Optics of aberroscopy and super vision," J. Cataract Refractive Surg. 27, 1093-1107 (2001).
    [CrossRef]
  3. D. Williams, G.-Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, "Visual benefit of correcting higher order aberrations of the eye," J. Refract. Surg. 16, S554-S559 (2000).
    [PubMed]
  4. B. A. Drum, "Aberration analyses needed for FDA evaluation of safety and effectiveness of wavefront-guided refractive surgical devices," J. Refract. Surg. 19, S588-S591 (2003).
    [PubMed]
  5. S. Marcos, "Are changes in ocular aberrations with age a significant problem for refractive surgery?," J. Refract. Surg. 18, S572-S578 (2002).
    [PubMed]
  6. X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, "Relationship between refractive error and monochromatic aberrations of the eye," Optom. Vision Sci. 80, 43-49 (2003).
    [CrossRef]
  7. L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol. Opt. 22, 427-433 (2002).
    [CrossRef] [PubMed]
  8. P. Artal, A. Guirao, E. Berrio, and D. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
    [CrossRef]
  9. M. Mrochen, M. Jankov, M. Bueeler, and T. Seiler, "Correlation between corneal and total wavefront aberrations in myopic eyes," J. Refract. Surg. 19, 104-112 (2003).
    [PubMed]
  10. J. C. He, J. Gwiadza, F. Thorn, and R. Held, "Wave-front aberrations in the anterior corneal surface and the whole eye," J. Opt. Soc. Am. A 19, 1155-1163 (2002).
  11. R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, and J. Zayac, "Corneal first surface optical aberrations and visual performance," J. Refract. Surg. 16, 507-514 (2000).
    [PubMed]
  12. L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
    [CrossRef]
  13. A. M. McKendrick and N. A. Brennan, "The axis of astigmatism in right and left eye pairs," Optom. Vision Sci. 74, 668-675 (1997).
    [CrossRef]
  14. S. J. Bogan, G. O. Waring III, O. Ibrahim, C. Drews, and L. Curtis, "Classification of normal corneal topography based on computer-assisted videokeratography," Arch. Ophthalmol. (Chicago) 108, 945-949 (1990).
  15. E. H. Myrowitz, A. C. Kouzis, and T. P. O'Brien, "High interocular corneal symmetry in average simulated keratometry, central corneal thickness, and posterior elevation," Optom. Vision Sci. 82, 428-431 (2005).
    [CrossRef]
  16. Z. Liu, A. J. Huang, and S. C. Pflugfelder, "Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system," Br. J. Ophthamol. 83, 774-778 (1999).
    [CrossRef]
  17. L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refractive Surg. 29, 1896-1903 (2003).
    [CrossRef]
  18. J. Porter, A. Guirao, I. G. Cox, and D. A. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef]
  19. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
    [CrossRef]
  20. J. F. Castejon-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
    [CrossRef] [PubMed]
  21. J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, R. Gutierrez, and C. Villa, "Interocular-differences in corneal asphericity and aberrations diminish contrast-sensitivity and binocular summation after Lasik," Invest. Ophthalmol. Visual Sci. 45, E-Abstract 199 (2004).
  22. J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, C. Villa, and R. Gutierrez, "Binocular visual performance after Lasik," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 4356 (2005).
  23. C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract Refractive Surg. 14, 46-52 (1988).
  24. S. Serrao, G. Lombardo, and M. Lombardo, "Differences in nasal and temporal responses of the cornea after photorefractive keratectomy," J. Cataract Refractive Surg. 31, 30-38 (2005).
    [CrossRef]
  25. S. Serrao, M. Lombardo, and F. Mondini, "Photorefractive keratectomy with and without smoothing: a bilateral study," J. Refract. Surg. 19, 58-64 (2003).
    [PubMed]
  26. M. Born and E. Wolf, Principles of Optics, 1st ed. (Pergamon, 1959), pp. 767-772.
  27. V. N. Mahajan, "Zernike circle polynomials and optical aberrations of systems with circular pupils," Engineering and Laboratory Notes in Opt. Photon. News 5, S21-S24 (1994).
  28. S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberration and cone directionality," Vision Res. 40, 2437-2447 (2000).
    [CrossRef] [PubMed]
  29. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
    [PubMed]
  30. M. K. Smolek, S. D. Klyce, and E. J. Sarver, "Inattention to nonsuperimposable midline symmetry causes wavefront analysis error," Arch. Ophthalmol. (Chicago) 120, 439-447 (2002).
  31. L. N. Thibos, "Wavefront data reporting and terminology," J. Refract. Surg. 17, S578-S583 (2001).
    [PubMed]
  32. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
    [CrossRef]
  33. J. R. Jimenez, R. G. Anera, J. A. Diaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
    [CrossRef]
  34. S. Marcos, D. Cano, and S. Barbero, "Increase in corneal asphericity after standard laser in situ keratomileusis for myopia is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, S592-S595 (2003).
  35. P. S. Hersh, K. Fry, and W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology," J. Cataract Refract. Surg. 29, 2096-2104 (2003).
    [CrossRef] [PubMed]
  36. M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
    [PubMed]
  37. T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. (Chicago) 118, 17-21 (2000).
  38. C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).
  39. S. Serrao and M. Lombardo, "One-year results of photorefractive keratectomy with and without surface smoothing using the Technolas 217C laser," J. Refract. Surg. 20, 444-449 (2004).
    [PubMed]
  40. S. Serrao and M. Lombardo, "Corneal epithelial healing after photorefractive keratectomy: an analytical study," J. Cataract Refract. Surg. 31, 930-937 (2005).
    [CrossRef] [PubMed]
  41. A. Carkeet, S.-W. Leo, B.-K. Khoo, and K.-G. Au Eong, "Modulation transfer functions in children: pupil size dependence and meridional anisotropy," Invest. Ophthalmol. Visual Sci. 44, 3248-3256 (2003).
    [CrossRef]
  42. W. N. Charman and N. Chateau, "The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration," Ophthalmic Physiol. Opt. 23, 479-493 (2003).
    [CrossRef] [PubMed]
  43. D. A. Atchison, "Anterior corneal and internal contributions to peripheral aberrations of human eyes," J. Opt. Soc. Am. A 21, 355-359 (2004).
    [CrossRef]
  44. R. Navarro, E. Moreno, and C. Dorronsoro, "Monochromatic aberrations and point-spread functions of the human eye across the visual field," J. Opt. Soc. Am. A 15, 2522-2529 (1998).
    [CrossRef]
  45. M. Bueeler, M. Mrochen, and T. Seiler, "Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation," J. Cataract Refract. Surg. 29, 257-263 (2003).
    [CrossRef] [PubMed]
  46. J. L. Güell, F. Velasco, C. Roberts, M. T. Sisquella, and A. Mamhoud, "Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis," J. Cataract Refract. Surg. 31, 115-119 (2005).
    [CrossRef] [PubMed]
  47. C. E. Campbell, "Improving visual function diagnostic metrics with the use of higher-order aberration information from the eye," J. Refract. Surg. 20, S495-S503 (2004).
    [PubMed]
  48. J. D. Marsack, L. N. Thibos, and R. A. Applegate, "Metrics of optical quality derived from wave aberrations predict visual performance," J. Vision 4, 322-328 (2004).
    [CrossRef]
  49. H.-B. Fam and K.-L. Lim, "Effect of higher-order wavefront aberrations on binocular summation," J. Refract. Surg. 20, S570-S575 (2004).
    [PubMed]
  50. J. R. Jimenez Cuesta, R. Gonzalez Anera, R. Jimenez, and C. Salas, "Impact of interocular differences in corneal asphericity on binocular summation," Am. J. Ophthalmol. 135, 279-284 (2003).
    [CrossRef] [PubMed]
  51. J. Rabin, "Two eyes are better than one: binocular enhancement in the contrast domain," Ophthalmic Physiol. Opt. 15, 45-48 (1995).
    [CrossRef] [PubMed]

2005 (5)

E. H. Myrowitz, A. C. Kouzis, and T. P. O'Brien, "High interocular corneal symmetry in average simulated keratometry, central corneal thickness, and posterior elevation," Optom. Vision Sci. 82, 428-431 (2005).
[CrossRef]

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, C. Villa, and R. Gutierrez, "Binocular visual performance after Lasik," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 4356 (2005).

S. Serrao, G. Lombardo, and M. Lombardo, "Differences in nasal and temporal responses of the cornea after photorefractive keratectomy," J. Cataract Refractive Surg. 31, 30-38 (2005).
[CrossRef]

S. Serrao and M. Lombardo, "Corneal epithelial healing after photorefractive keratectomy: an analytical study," J. Cataract Refract. Surg. 31, 930-937 (2005).
[CrossRef] [PubMed]

J. L. Güell, F. Velasco, C. Roberts, M. T. Sisquella, and A. Mamhoud, "Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis," J. Cataract Refract. Surg. 31, 115-119 (2005).
[CrossRef] [PubMed]

2004 (7)

C. E. Campbell, "Improving visual function diagnostic metrics with the use of higher-order aberration information from the eye," J. Refract. Surg. 20, S495-S503 (2004).
[PubMed]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, "Metrics of optical quality derived from wave aberrations predict visual performance," J. Vision 4, 322-328 (2004).
[CrossRef]

H.-B. Fam and K.-L. Lim, "Effect of higher-order wavefront aberrations on binocular summation," J. Refract. Surg. 20, S570-S575 (2004).
[PubMed]

D. A. Atchison, "Anterior corneal and internal contributions to peripheral aberrations of human eyes," J. Opt. Soc. Am. A 21, 355-359 (2004).
[CrossRef]

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, R. Gutierrez, and C. Villa, "Interocular-differences in corneal asphericity and aberrations diminish contrast-sensitivity and binocular summation after Lasik," Invest. Ophthalmol. Visual Sci. 45, E-Abstract 199 (2004).

J. R. Jimenez, R. G. Anera, J. A. Diaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
[CrossRef]

S. Serrao and M. Lombardo, "One-year results of photorefractive keratectomy with and without surface smoothing using the Technolas 217C laser," J. Refract. Surg. 20, 444-449 (2004).
[PubMed]

2003 (12)

S. Marcos, D. Cano, and S. Barbero, "Increase in corneal asphericity after standard laser in situ keratomileusis for myopia is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, S592-S595 (2003).

P. S. Hersh, K. Fry, and W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology," J. Cataract Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

S. Serrao, M. Lombardo, and F. Mondini, "Photorefractive keratectomy with and without smoothing: a bilateral study," J. Refract. Surg. 19, 58-64 (2003).
[PubMed]

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refractive Surg. 29, 1896-1903 (2003).
[CrossRef]

B. A. Drum, "Aberration analyses needed for FDA evaluation of safety and effectiveness of wavefront-guided refractive surgical devices," J. Refract. Surg. 19, S588-S591 (2003).
[PubMed]

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, "Relationship between refractive error and monochromatic aberrations of the eye," Optom. Vision Sci. 80, 43-49 (2003).
[CrossRef]

M. Mrochen, M. Jankov, M. Bueeler, and T. Seiler, "Correlation between corneal and total wavefront aberrations in myopic eyes," J. Refract. Surg. 19, 104-112 (2003).
[PubMed]

A. Carkeet, S.-W. Leo, B.-K. Khoo, and K.-G. Au Eong, "Modulation transfer functions in children: pupil size dependence and meridional anisotropy," Invest. Ophthalmol. Visual Sci. 44, 3248-3256 (2003).
[CrossRef]

W. N. Charman and N. Chateau, "The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration," Ophthalmic Physiol. Opt. 23, 479-493 (2003).
[CrossRef] [PubMed]

J. R. Jimenez Cuesta, R. Gonzalez Anera, R. Jimenez, and C. Salas, "Impact of interocular differences in corneal asphericity on binocular summation," Am. J. Ophthalmol. 135, 279-284 (2003).
[CrossRef] [PubMed]

M. Bueeler, M. Mrochen, and T. Seiler, "Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation," J. Cataract Refract. Surg. 29, 257-263 (2003).
[CrossRef] [PubMed]

2002 (7)

J. C. He, J. Gwiadza, F. Thorn, and R. Held, "Wave-front aberrations in the anterior corneal surface and the whole eye," J. Opt. Soc. Am. A 19, 1155-1163 (2002).

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

S. Marcos, "Are changes in ocular aberrations with age a significant problem for refractive surgery?," J. Refract. Surg. 18, S572-S578 (2002).
[PubMed]

J. F. Castejon-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[PubMed]

M. K. Smolek, S. D. Klyce, and E. J. Sarver, "Inattention to nonsuperimposable midline symmetry causes wavefront analysis error," Arch. Ophthalmol. (Chicago) 120, 439-447 (2002).

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

2001 (4)

L. N. Thibos, "Wavefront data reporting and terminology," J. Refract. Surg. 17, S578-S583 (2001).
[PubMed]

J. Porter, A. Guirao, I. G. Cox, and D. A. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

R. A. Applegate, L. N. Thibos, and G. Hilmantel, "Optics of aberroscopy and super vision," J. Cataract Refractive Surg. 27, 1093-1107 (2001).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

2000 (5)

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, and J. Zayac, "Corneal first surface optical aberrations and visual performance," J. Refract. Surg. 16, 507-514 (2000).
[PubMed]

D. Williams, G.-Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, "Visual benefit of correcting higher order aberrations of the eye," J. Refract. Surg. 16, S554-S559 (2000).
[PubMed]

L. N. Thibos, "The prospects for perfect vision," J. Refract. Surg. 16, S540-S546 (2000).
[PubMed]

S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberration and cone directionality," Vision Res. 40, 2437-2447 (2000).
[CrossRef] [PubMed]

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. (Chicago) 118, 17-21 (2000).

1999 (1)

Z. Liu, A. J. Huang, and S. C. Pflugfelder, "Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system," Br. J. Ophthamol. 83, 774-778 (1999).
[CrossRef]

1998 (2)

C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).

R. Navarro, E. Moreno, and C. Dorronsoro, "Monochromatic aberrations and point-spread functions of the human eye across the visual field," J. Opt. Soc. Am. A 15, 2522-2529 (1998).
[CrossRef]

1997 (3)

M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
[PubMed]

A. M. McKendrick and N. A. Brennan, "The axis of astigmatism in right and left eye pairs," Optom. Vision Sci. 74, 668-675 (1997).
[CrossRef]

J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
[CrossRef]

1995 (1)

J. Rabin, "Two eyes are better than one: binocular enhancement in the contrast domain," Ophthalmic Physiol. Opt. 15, 45-48 (1995).
[CrossRef] [PubMed]

1994 (1)

V. N. Mahajan, "Zernike circle polynomials and optical aberrations of systems with circular pupils," Engineering and Laboratory Notes in Opt. Photon. News 5, S21-S24 (1994).

1990 (1)

S. J. Bogan, G. O. Waring III, O. Ibrahim, C. Drews, and L. Curtis, "Classification of normal corneal topography based on computer-assisted videokeratography," Arch. Ophthalmol. (Chicago) 108, 945-949 (1990).

1988 (1)

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract Refractive Surg. 14, 46-52 (1988).

Anera, R. G.

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, C. Villa, and R. Gutierrez, "Binocular visual performance after Lasik," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 4356 (2005).

J. R. Jimenez, R. G. Anera, J. A. Diaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
[CrossRef]

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, R. Gutierrez, and C. Villa, "Interocular-differences in corneal asphericity and aberrations diminish contrast-sensitivity and binocular summation after Lasik," Invest. Ophthalmol. Visual Sci. 45, E-Abstract 199 (2004).

Anera, R. Gonzalez

J. R. Jimenez Cuesta, R. Gonzalez Anera, R. Jimenez, and C. Salas, "Impact of interocular differences in corneal asphericity on binocular summation," Am. J. Ophthalmol. 135, 279-284 (2003).
[CrossRef] [PubMed]

Applegate, R. A.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, "Metrics of optical quality derived from wave aberrations predict visual performance," J. Vision 4, 322-328 (2004).
[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[PubMed]

R. A. Applegate, L. N. Thibos, and G. Hilmantel, "Optics of aberroscopy and super vision," J. Cataract Refractive Surg. 27, 1093-1107 (2001).
[CrossRef]

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, and J. Zayac, "Corneal first surface optical aberrations and visual performance," J. Refract. Surg. 16, 507-514 (2000).
[PubMed]

C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).

Artal, P.

J. F. Castejon-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

Atchison, D. A.

Barbero, S.

S. Marcos, D. Cano, and S. Barbero, "Increase in corneal asphericity after standard laser in situ keratomileusis for myopia is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, S592-S595 (2003).

Benito, A.

J. F. Castejon-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Berrio, E.

P. Artal, A. Guirao, E. Berrio, and D. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

Blaker, W.

P. S. Hersh, K. Fry, and W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology," J. Cataract Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

Bogan, S. J.

S. J. Bogan, G. O. Waring III, O. Ibrahim, C. Drews, and L. Curtis, "Classification of normal corneal topography based on computer-assisted videokeratography," Arch. Ophthalmol. (Chicago) 108, 945-949 (1990).

Born, M.

M. Born and E. Wolf, Principles of Optics, 1st ed. (Pergamon, 1959), pp. 767-772.

Bradley, A.

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, "Relationship between refractive error and monochromatic aberrations of the eye," Optom. Vision Sci. 80, 43-49 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

Brennan, N. A.

A. M. McKendrick and N. A. Brennan, "The axis of astigmatism in right and left eye pairs," Optom. Vision Sci. 74, 668-675 (1997).
[CrossRef]

Bueeler, M.

M. Mrochen, M. Jankov, M. Bueeler, and T. Seiler, "Correlation between corneal and total wavefront aberrations in myopic eyes," J. Refract. Surg. 19, 104-112 (2003).
[PubMed]

M. Bueeler, M. Mrochen, and T. Seiler, "Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation," J. Cataract Refract. Surg. 29, 257-263 (2003).
[CrossRef] [PubMed]

Burns, S. A.

S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberration and cone directionality," Vision Res. 40, 2437-2447 (2000).
[CrossRef] [PubMed]

Campbell, C. E.

C. E. Campbell, "Improving visual function diagnostic metrics with the use of higher-order aberration information from the eye," J. Refract. Surg. 20, S495-S503 (2004).
[PubMed]

Cano, D.

S. Marcos, D. Cano, and S. Barbero, "Increase in corneal asphericity after standard laser in situ keratomileusis for myopia is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, S592-S595 (2003).

Carkeet, A.

A. Carkeet, S.-W. Leo, B.-K. Khoo, and K.-G. Au Eong, "Modulation transfer functions in children: pupil size dependence and meridional anisotropy," Invest. Ophthalmol. Visual Sci. 44, 3248-3256 (2003).
[CrossRef]

Castejon-Mochón, J. F.

J. F. Castejon-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman and N. Chateau, "The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration," Ophthalmic Physiol. Opt. 23, 479-493 (2003).
[CrossRef] [PubMed]

Chateau, N.

W. N. Charman and N. Chateau, "The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration," Ophthalmic Physiol. Opt. 23, 479-493 (2003).
[CrossRef] [PubMed]

Cheng, X.

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, "Relationship between refractive error and monochromatic aberrations of the eye," Optom. Vision Sci. 80, 43-49 (2003).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

Corbett, M. C.

M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
[PubMed]

Cox, I.

D. Williams, G.-Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, "Visual benefit of correcting higher order aberrations of the eye," J. Refract. Surg. 16, S554-S559 (2000).
[PubMed]

Cox, I. G.

Cuesta, J. R.

J. R. Jimenez Cuesta, R. Gonzalez Anera, R. Jimenez, and C. Salas, "Impact of interocular differences in corneal asphericity on binocular summation," Am. J. Ophthalmol. 135, 279-284 (2003).
[CrossRef] [PubMed]

Curtis, L.

S. J. Bogan, G. O. Waring III, O. Ibrahim, C. Drews, and L. Curtis, "Classification of normal corneal topography based on computer-assisted videokeratography," Arch. Ophthalmol. (Chicago) 108, 945-949 (1990).

Dai, E.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

del Barco, L. Jimenez

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, C. Villa, and R. Gutierrez, "Binocular visual performance after Lasik," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 4356 (2005).

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, R. Gutierrez, and C. Villa, "Interocular-differences in corneal asphericity and aberrations diminish contrast-sensitivity and binocular summation after Lasik," Invest. Ophthalmol. Visual Sci. 45, E-Abstract 199 (2004).

Diaz, J. A.

Dorronsoro, C.

Drews, C.

S. J. Bogan, G. O. Waring III, O. Ibrahim, C. Drews, and L. Curtis, "Classification of normal corneal topography based on computer-assisted videokeratography," Arch. Ophthalmol. (Chicago) 108, 945-949 (1990).

Drum, B. A.

B. A. Drum, "Aberration analyses needed for FDA evaluation of safety and effectiveness of wavefront-guided refractive surgical devices," J. Refract. Surg. 19, S588-S591 (2003).
[PubMed]

Eong, K.-G. Au

A. Carkeet, S.-W. Leo, B.-K. Khoo, and K.-G. Au Eong, "Modulation transfer functions in children: pupil size dependence and meridional anisotropy," Invest. Ophthalmol. Visual Sci. 44, 3248-3256 (2003).
[CrossRef]

Fam, H.-B.

H.-B. Fam and K.-L. Lim, "Effect of higher-order wavefront aberrations on binocular summation," J. Refract. Surg. 20, S570-S575 (2004).
[PubMed]

Fry, K.

P. S. Hersh, K. Fry, and W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology," J. Cataract Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

Güell, J. L.

J. L. Güell, F. Velasco, C. Roberts, M. T. Sisquella, and A. Mamhoud, "Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis," J. Cataract Refract. Surg. 31, 115-119 (2005).
[CrossRef] [PubMed]

Guirao, A.

P. Artal, A. Guirao, E. Berrio, and D. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. A. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

D. Williams, G.-Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, "Visual benefit of correcting higher order aberrations of the eye," J. Refract. Surg. 16, S554-S559 (2000).
[PubMed]

Gutierrez, R.

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, C. Villa, and R. Gutierrez, "Binocular visual performance after Lasik," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 4356 (2005).

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, R. Gutierrez, and C. Villa, "Interocular-differences in corneal asphericity and aberrations diminish contrast-sensitivity and binocular summation after Lasik," Invest. Ophthalmol. Visual Sci. 45, E-Abstract 199 (2004).

Gwiadza, J.

J. C. He, J. Gwiadza, F. Thorn, and R. Held, "Wave-front aberrations in the anterior corneal surface and the whole eye," J. Opt. Soc. Am. A 19, 1155-1163 (2002).

He, J. C.

J. C. He, J. Gwiadza, F. Thorn, and R. Held, "Wave-front aberrations in the anterior corneal surface and the whole eye," J. Opt. Soc. Am. A 19, 1155-1163 (2002).

Held, R.

J. C. He, J. Gwiadza, F. Thorn, and R. Held, "Wave-front aberrations in the anterior corneal surface and the whole eye," J. Opt. Soc. Am. A 19, 1155-1163 (2002).

Hemenger, R. P.

M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
[PubMed]

Hersh, P. S.

P. S. Hersh, K. Fry, and W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology," J. Cataract Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

Hilmantel, G.

R. A. Applegate, L. N. Thibos, and G. Hilmantel, "Optics of aberroscopy and super vision," J. Cataract Refractive Surg. 27, 1093-1107 (2001).
[CrossRef]

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, and J. Zayac, "Corneal first surface optical aberrations and visual performance," J. Refract. Surg. 16, 507-514 (2000).
[PubMed]

Hofer, H.

D. Williams, G.-Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, "Visual benefit of correcting higher order aberrations of the eye," J. Refract. Surg. 16, S554-S559 (2000).
[PubMed]

Hong, X.

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, "Relationship between refractive error and monochromatic aberrations of the eye," Optom. Vision Sci. 80, 43-49 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

Howland, H. C.

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, and J. Zayac, "Corneal first surface optical aberrations and visual performance," J. Refract. Surg. 16, 507-514 (2000).
[PubMed]

C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).

Huang, A. J.

Z. Liu, A. J. Huang, and S. C. Pflugfelder, "Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system," Br. J. Ophthamol. 83, 774-778 (1999).
[CrossRef]

Ibrahim, O.

S. J. Bogan, G. O. Waring III, O. Ibrahim, C. Drews, and L. Curtis, "Classification of normal corneal topography based on computer-assisted videokeratography," Arch. Ophthalmol. (Chicago) 108, 945-949 (1990).

Jankov, M.

M. Mrochen, M. Jankov, M. Bueeler, and T. Seiler, "Correlation between corneal and total wavefront aberrations in myopic eyes," J. Refract. Surg. 19, 104-112 (2003).
[PubMed]

Jimenez, J. R.

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, C. Villa, and R. Gutierrez, "Binocular visual performance after Lasik," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 4356 (2005).

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, R. Gutierrez, and C. Villa, "Interocular-differences in corneal asphericity and aberrations diminish contrast-sensitivity and binocular summation after Lasik," Invest. Ophthalmol. Visual Sci. 45, E-Abstract 199 (2004).

J. R. Jimenez, R. G. Anera, J. A. Diaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
[CrossRef]

Jimenez, R.

J. R. Jimenez Cuesta, R. Gonzalez Anera, R. Jimenez, and C. Salas, "Impact of interocular differences in corneal asphericity on binocular summation," Am. J. Ophthalmol. 135, 279-284 (2003).
[CrossRef] [PubMed]

Kaemmerer, M.

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. (Chicago) 118, 17-21 (2000).

Khoo, B.-K.

A. Carkeet, S.-W. Leo, B.-K. Khoo, and K.-G. Au Eong, "Modulation transfer functions in children: pupil size dependence and meridional anisotropy," Invest. Ophthalmol. Visual Sci. 44, 3248-3256 (2003).
[CrossRef]

Klyce, S. D.

M. K. Smolek, S. D. Klyce, and E. J. Sarver, "Inattention to nonsuperimposable midline symmetry causes wavefront analysis error," Arch. Ophthalmol. (Chicago) 120, 439-447 (2002).

C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).

Koch, D. D.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refractive Surg. 29, 1896-1903 (2003).
[CrossRef]

Koons, S. J.

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract Refractive Surg. 14, 46-52 (1988).

Kouzis, A. C.

E. H. Myrowitz, A. C. Kouzis, and T. P. O'Brien, "High interocular corneal symmetry in average simulated keratometry, central corneal thickness, and posterior elevation," Optom. Vision Sci. 82, 428-431 (2005).
[CrossRef]

Krinke, H.-E.

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. (Chicago) 118, 17-21 (2000).

Leo, S.-W.

A. Carkeet, S.-W. Leo, B.-K. Khoo, and K.-G. Au Eong, "Modulation transfer functions in children: pupil size dependence and meridional anisotropy," Invest. Ophthalmol. Visual Sci. 44, 3248-3256 (2003).
[CrossRef]

Liang, J.

Lim, K.-L.

H.-B. Fam and K.-L. Lim, "Effect of higher-order wavefront aberrations on binocular summation," J. Refract. Surg. 20, S570-S575 (2004).
[PubMed]

Liu, Z.

Z. Liu, A. J. Huang, and S. C. Pflugfelder, "Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system," Br. J. Ophthamol. 83, 774-778 (1999).
[CrossRef]

Lombardo, G.

S. Serrao, G. Lombardo, and M. Lombardo, "Differences in nasal and temporal responses of the cornea after photorefractive keratectomy," J. Cataract Refractive Surg. 31, 30-38 (2005).
[CrossRef]

Lombardo, M.

S. Serrao, G. Lombardo, and M. Lombardo, "Differences in nasal and temporal responses of the cornea after photorefractive keratectomy," J. Cataract Refractive Surg. 31, 30-38 (2005).
[CrossRef]

S. Serrao and M. Lombardo, "Corneal epithelial healing after photorefractive keratectomy: an analytical study," J. Cataract Refract. Surg. 31, 930-937 (2005).
[CrossRef] [PubMed]

S. Serrao and M. Lombardo, "One-year results of photorefractive keratectomy with and without surface smoothing using the Technolas 217C laser," J. Refract. Surg. 20, 444-449 (2004).
[PubMed]

S. Serrao, M. Lombardo, and F. Mondini, "Photorefractive keratectomy with and without smoothing: a bilateral study," J. Refract. Surg. 19, 58-64 (2003).
[PubMed]

López-Gil, N.

J. F. Castejon-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Mahajan, V. N.

V. N. Mahajan, "Zernike circle polynomials and optical aberrations of systems with circular pupils," Engineering and Laboratory Notes in Opt. Photon. News 5, S21-S24 (1994).

Mamhoud, A.

J. L. Güell, F. Velasco, C. Roberts, M. T. Sisquella, and A. Mamhoud, "Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis," J. Cataract Refract. Surg. 31, 115-119 (2005).
[CrossRef] [PubMed]

Marcos, S.

S. Marcos, D. Cano, and S. Barbero, "Increase in corneal asphericity after standard laser in situ keratomileusis for myopia is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, S592-S595 (2003).

S. Marcos, "Are changes in ocular aberrations with age a significant problem for refractive surgery?," J. Refract. Surg. 18, S572-S578 (2002).
[PubMed]

S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberration and cone directionality," Vision Res. 40, 2437-2447 (2000).
[CrossRef] [PubMed]

Marsack, J. D.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, "Metrics of optical quality derived from wave aberrations predict visual performance," J. Vision 4, 322-328 (2004).
[CrossRef]

Marshall, J.

M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
[PubMed]

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract Refractive Surg. 14, 46-52 (1988).

Martinez, C. E.

C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).

McDonald, M. B.

C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).

McKendrick, A. M.

A. M. McKendrick and N. A. Brennan, "The axis of astigmatism in right and left eye pairs," Optom. Vision Sci. 74, 668-675 (1997).
[CrossRef]

Medina, J. P.

C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).

Mierdel, P.

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. (Chicago) 118, 17-21 (2000).

Mondini, F.

S. Serrao, M. Lombardo, and F. Mondini, "Photorefractive keratectomy with and without smoothing: a bilateral study," J. Refract. Surg. 19, 58-64 (2003).
[PubMed]

Moreno, E.

Mrochen, M.

M. Bueeler, M. Mrochen, and T. Seiler, "Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation," J. Cataract Refract. Surg. 29, 257-263 (2003).
[CrossRef] [PubMed]

M. Mrochen, M. Jankov, M. Bueeler, and T. Seiler, "Correlation between corneal and total wavefront aberrations in myopic eyes," J. Refract. Surg. 19, 104-112 (2003).
[PubMed]

Munnerlyn, C. R.

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract Refractive Surg. 14, 46-52 (1988).

Myrowitz, E. H.

E. H. Myrowitz, A. C. Kouzis, and T. P. O'Brien, "High interocular corneal symmetry in average simulated keratometry, central corneal thickness, and posterior elevation," Optom. Vision Sci. 82, 428-431 (2005).
[CrossRef]

Nathoo, A.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

Navarro, R.

O'Brart, D. P.

M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
[PubMed]

O'Brien, T. P.

E. H. Myrowitz, A. C. Kouzis, and T. P. O'Brien, "High interocular corneal symmetry in average simulated keratometry, central corneal thickness, and posterior elevation," Optom. Vision Sci. 82, 428-431 (2005).
[CrossRef]

Oliver, M. O.

M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
[PubMed]

Perez-Ocon, F.

Pflugfelder, S. C.

Z. Liu, A. J. Huang, and S. C. Pflugfelder, "Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system," Br. J. Ophthamol. 83, 774-778 (1999).
[CrossRef]

Porter, J.

J. Porter, A. Guirao, I. G. Cox, and D. A. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

D. Williams, G.-Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, "Visual benefit of correcting higher order aberrations of the eye," J. Refract. Surg. 16, S554-S559 (2000).
[PubMed]

Rabin, J.

J. Rabin, "Two eyes are better than one: binocular enhancement in the contrast domain," Ophthalmic Physiol. Opt. 15, 45-48 (1995).
[CrossRef] [PubMed]

Roberts, C.

J. L. Güell, F. Velasco, C. Roberts, M. T. Sisquella, and A. Mamhoud, "Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis," J. Cataract Refract. Surg. 31, 115-119 (2005).
[CrossRef] [PubMed]

Salas, C.

J. R. Jimenez Cuesta, R. Gonzalez Anera, R. Jimenez, and C. Salas, "Impact of interocular differences in corneal asphericity on binocular summation," Am. J. Ophthalmol. 135, 279-284 (2003).
[CrossRef] [PubMed]

Sarver, E. J.

M. K. Smolek, S. D. Klyce, and E. J. Sarver, "Inattention to nonsuperimposable midline symmetry causes wavefront analysis error," Arch. Ophthalmol. (Chicago) 120, 439-447 (2002).

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[PubMed]

Seiler, T.

M. Mrochen, M. Jankov, M. Bueeler, and T. Seiler, "Correlation between corneal and total wavefront aberrations in myopic eyes," J. Refract. Surg. 19, 104-112 (2003).
[PubMed]

M. Bueeler, M. Mrochen, and T. Seiler, "Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation," J. Cataract Refract. Surg. 29, 257-263 (2003).
[CrossRef] [PubMed]

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. (Chicago) 118, 17-21 (2000).

Serrao, S.

S. Serrao and M. Lombardo, "Corneal epithelial healing after photorefractive keratectomy: an analytical study," J. Cataract Refract. Surg. 31, 930-937 (2005).
[CrossRef] [PubMed]

S. Serrao, G. Lombardo, and M. Lombardo, "Differences in nasal and temporal responses of the cornea after photorefractive keratectomy," J. Cataract Refractive Surg. 31, 30-38 (2005).
[CrossRef]

S. Serrao and M. Lombardo, "One-year results of photorefractive keratectomy with and without surface smoothing using the Technolas 217C laser," J. Refract. Surg. 20, 444-449 (2004).
[PubMed]

S. Serrao, M. Lombardo, and F. Mondini, "Photorefractive keratectomy with and without smoothing: a bilateral study," J. Refract. Surg. 19, 58-64 (2003).
[PubMed]

Sisquella, M. T.

J. L. Güell, F. Velasco, C. Roberts, M. T. Sisquella, and A. Mamhoud, "Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis," J. Cataract Refract. Surg. 31, 115-119 (2005).
[CrossRef] [PubMed]

Smolek, M. K.

M. K. Smolek, S. D. Klyce, and E. J. Sarver, "Inattention to nonsuperimposable midline symmetry causes wavefront analysis error," Arch. Ophthalmol. (Chicago) 120, 439-447 (2002).

Starck, T.

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, and J. Zayac, "Corneal first surface optical aberrations and visual performance," J. Refract. Surg. 16, 507-514 (2000).
[PubMed]

Thibos, L. N.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, "Metrics of optical quality derived from wave aberrations predict visual performance," J. Vision 4, 322-328 (2004).
[CrossRef]

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, "Relationship between refractive error and monochromatic aberrations of the eye," Optom. Vision Sci. 80, 43-49 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[PubMed]

L. N. Thibos, "Wavefront data reporting and terminology," J. Refract. Surg. 17, S578-S583 (2001).
[PubMed]

R. A. Applegate, L. N. Thibos, and G. Hilmantel, "Optics of aberroscopy and super vision," J. Cataract Refractive Surg. 27, 1093-1107 (2001).
[CrossRef]

L. N. Thibos, "The prospects for perfect vision," J. Refract. Surg. 16, S540-S546 (2000).
[PubMed]

Thorn, F.

J. C. He, J. Gwiadza, F. Thorn, and R. Held, "Wave-front aberrations in the anterior corneal surface and the whole eye," J. Opt. Soc. Am. A 19, 1155-1163 (2002).

Tomlinson, A.

M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
[PubMed]

Tu, E. Y.

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, and J. Zayac, "Corneal first surface optical aberrations and visual performance," J. Refract. Surg. 16, 507-514 (2000).
[PubMed]

Velasco, F.

J. L. Güell, F. Velasco, C. Roberts, M. T. Sisquella, and A. Mamhoud, "Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis," J. Cataract Refract. Surg. 31, 115-119 (2005).
[CrossRef] [PubMed]

Verma, S.

M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
[PubMed]

Villa, C.

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, C. Villa, and R. Gutierrez, "Binocular visual performance after Lasik," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 4356 (2005).

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, R. Gutierrez, and C. Villa, "Interocular-differences in corneal asphericity and aberrations diminish contrast-sensitivity and binocular summation after Lasik," Invest. Ophthalmol. Visual Sci. 45, E-Abstract 199 (2004).

Wang, L.

L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refractive Surg. 29, 1896-1903 (2003).
[CrossRef]

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

Waring, G. O.

S. J. Bogan, G. O. Waring III, O. Ibrahim, C. Drews, and L. Curtis, "Classification of normal corneal topography based on computer-assisted videokeratography," Arch. Ophthalmol. (Chicago) 108, 945-949 (1990).

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[PubMed]

Williams, D.

P. Artal, A. Guirao, E. Berrio, and D. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

D. Williams, G.-Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, "Visual benefit of correcting higher order aberrations of the eye," J. Refract. Surg. 16, S554-S559 (2000).
[PubMed]

Williams, D. A.

Williams, D. R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 1st ed. (Pergamon, 1959), pp. 767-772.

Yoon, G.-Y.

D. Williams, G.-Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, "Visual benefit of correcting higher order aberrations of the eye," J. Refract. Surg. 16, S554-S559 (2000).
[PubMed]

Zayac, J.

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, and J. Zayac, "Corneal first surface optical aberrations and visual performance," J. Refract. Surg. 16, 507-514 (2000).
[PubMed]

Am. J. Ophthalmol. (1)

J. R. Jimenez Cuesta, R. Gonzalez Anera, R. Jimenez, and C. Salas, "Impact of interocular differences in corneal asphericity on binocular summation," Am. J. Ophthalmol. 135, 279-284 (2003).
[CrossRef] [PubMed]

Arch. Ophthalmol. (Chicago) (4)

S. J. Bogan, G. O. Waring III, O. Ibrahim, C. Drews, and L. Curtis, "Classification of normal corneal topography based on computer-assisted videokeratography," Arch. Ophthalmol. (Chicago) 108, 945-949 (1990).

M. K. Smolek, S. D. Klyce, and E. J. Sarver, "Inattention to nonsuperimposable midline symmetry causes wavefront analysis error," Arch. Ophthalmol. (Chicago) 120, 439-447 (2002).

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. (Chicago) 118, 17-21 (2000).

C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).

Br. J. Ophthamol. (1)

Z. Liu, A. J. Huang, and S. C. Pflugfelder, "Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system," Br. J. Ophthamol. 83, 774-778 (1999).
[CrossRef]

Engineering and Laboratory Notes in Opt. Photon. News (1)

V. N. Mahajan, "Zernike circle polynomials and optical aberrations of systems with circular pupils," Engineering and Laboratory Notes in Opt. Photon. News 5, S21-S24 (1994).

Invest. Ophthalmol. Visual Sci. (3)

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, R. Gutierrez, and C. Villa, "Interocular-differences in corneal asphericity and aberrations diminish contrast-sensitivity and binocular summation after Lasik," Invest. Ophthalmol. Visual Sci. 45, E-Abstract 199 (2004).

J. R. Jimenez, R. G. Anera, L. Jimenez del Barco, C. Villa, and R. Gutierrez, "Binocular visual performance after Lasik," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 4356 (2005).

A. Carkeet, S.-W. Leo, B.-K. Khoo, and K.-G. Au Eong, "Modulation transfer functions in children: pupil size dependence and meridional anisotropy," Invest. Ophthalmol. Visual Sci. 44, 3248-3256 (2003).
[CrossRef]

J. Cataract Refract. Surg. (4)

S. Serrao and M. Lombardo, "Corneal epithelial healing after photorefractive keratectomy: an analytical study," J. Cataract Refract. Surg. 31, 930-937 (2005).
[CrossRef] [PubMed]

M. Bueeler, M. Mrochen, and T. Seiler, "Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation," J. Cataract Refract. Surg. 29, 257-263 (2003).
[CrossRef] [PubMed]

J. L. Güell, F. Velasco, C. Roberts, M. T. Sisquella, and A. Mamhoud, "Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis," J. Cataract Refract. Surg. 31, 115-119 (2005).
[CrossRef] [PubMed]

P. S. Hersh, K. Fry, and W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy. Clinical results and theoretical models of etiology," J. Cataract Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

J. Cataract Refractive Surg. (5)

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract Refractive Surg. 14, 46-52 (1988).

S. Serrao, G. Lombardo, and M. Lombardo, "Differences in nasal and temporal responses of the cornea after photorefractive keratectomy," J. Cataract Refractive Surg. 31, 30-38 (2005).
[CrossRef]

L. Wang and D. D. Koch, "Ocular higher-order aberrations in individuals screened for refractive surgery," J. Cataract Refractive Surg. 29, 1896-1903 (2003).
[CrossRef]

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

R. A. Applegate, L. N. Thibos, and G. Hilmantel, "Optics of aberroscopy and super vision," J. Cataract Refractive Surg. 27, 1093-1107 (2001).
[CrossRef]

J. Opt. Soc. Am. A (7)

J. Refract. Surg. (14)

H.-B. Fam and K.-L. Lim, "Effect of higher-order wavefront aberrations on binocular summation," J. Refract. Surg. 20, S570-S575 (2004).
[PubMed]

C. E. Campbell, "Improving visual function diagnostic metrics with the use of higher-order aberration information from the eye," J. Refract. Surg. 20, S495-S503 (2004).
[PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-S660 (2002).
[PubMed]

S. Marcos, D. Cano, and S. Barbero, "Increase in corneal asphericity after standard laser in situ keratomileusis for myopia is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, S592-S595 (2003).

L. N. Thibos, "Wavefront data reporting and terminology," J. Refract. Surg. 17, S578-S583 (2001).
[PubMed]

M. O. Oliver, R. P. Hemenger, M. C. Corbett, D. P. S. O'Brart, S. Verma, J. Marshall, and A. Tomlinson, "Corneal optical aberrations induced by photorefractive keratectomy," J. Refract. Surg. 13, 246-254 (1997).
[PubMed]

S. Serrao and M. Lombardo, "One-year results of photorefractive keratectomy with and without surface smoothing using the Technolas 217C laser," J. Refract. Surg. 20, 444-449 (2004).
[PubMed]

S. Serrao, M. Lombardo, and F. Mondini, "Photorefractive keratectomy with and without smoothing: a bilateral study," J. Refract. Surg. 19, 58-64 (2003).
[PubMed]

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, and J. Zayac, "Corneal first surface optical aberrations and visual performance," J. Refract. Surg. 16, 507-514 (2000).
[PubMed]

D. Williams, G.-Y. Yoon, J. Porter, A. Guirao, H. Hofer, and I. Cox, "Visual benefit of correcting higher order aberrations of the eye," J. Refract. Surg. 16, S554-S559 (2000).
[PubMed]

B. A. Drum, "Aberration analyses needed for FDA evaluation of safety and effectiveness of wavefront-guided refractive surgical devices," J. Refract. Surg. 19, S588-S591 (2003).
[PubMed]

S. Marcos, "Are changes in ocular aberrations with age a significant problem for refractive surgery?," J. Refract. Surg. 18, S572-S578 (2002).
[PubMed]

L. N. Thibos, "The prospects for perfect vision," J. Refract. Surg. 16, S540-S546 (2000).
[PubMed]

M. Mrochen, M. Jankov, M. Bueeler, and T. Seiler, "Correlation between corneal and total wavefront aberrations in myopic eyes," J. Refract. Surg. 19, 104-112 (2003).
[PubMed]

J. Vision (2)

P. Artal, A. Guirao, E. Berrio, and D. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, "Metrics of optical quality derived from wave aberrations predict visual performance," J. Vision 4, 322-328 (2004).
[CrossRef]

Ophthalmic Physiol. Opt. (3)

W. N. Charman and N. Chateau, "The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration," Ophthalmic Physiol. Opt. 23, 479-493 (2003).
[CrossRef] [PubMed]

J. Rabin, "Two eyes are better than one: binocular enhancement in the contrast domain," Ophthalmic Physiol. Opt. 15, 45-48 (1995).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

Optom. Vision Sci. (3)

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, "Relationship between refractive error and monochromatic aberrations of the eye," Optom. Vision Sci. 80, 43-49 (2003).
[CrossRef]

A. M. McKendrick and N. A. Brennan, "The axis of astigmatism in right and left eye pairs," Optom. Vision Sci. 74, 668-675 (1997).
[CrossRef]

E. H. Myrowitz, A. C. Kouzis, and T. P. O'Brien, "High interocular corneal symmetry in average simulated keratometry, central corneal thickness, and posterior elevation," Optom. Vision Sci. 82, 428-431 (2005).
[CrossRef]

Vision Res. (2)

S. Marcos and S. A. Burns, "On the symmetry between eyes of wavefront aberration and cone directionality," Vision Res. 40, 2437-2447 (2000).
[CrossRef] [PubMed]

J. F. Castejon-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics, 1st ed. (Pergamon, 1959), pp. 767-772.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

High-order Zernike coefficient values up to the seventh order before and one year after surgery over (a) 4- and (b) 7-mm pupils. The right and left eye WA data were averaged after converting the Zernike coefficients with odd symmetry about the y axis in the right eye. The numbers in the x axis represent the j index (single indexing scheme) related to each Zernike term. (a) Over the smaller pupil size, third-order terms ( Z 6 to Z 9 ) were not significantly increased ( p > 0.05 ) after surgery, and primary spherical aberration (coefficient Z 12 ) contained almost the overall magnitude value of corneal HOA. (b) Over a 7-mm pupil, most of the postoperative increase in the magnitude value of HOA was contained in the third and fourth orders. The inset shows an enlargement of the coefficient values with a different scale bar to emphasize the changes induced by photoablation for higher-order terms. Asterisks highlight high-order terms with a significant increase of the magnitude value induced by PRK ( p < 0.05 ) .

Fig. 2
Fig. 2

Correlation of HOAs between the fellow eyes in our population for 4- and 7-mm pupils. (a) Preoperative data, (b) one-year postoperative data. Each symbol shows the value of aberration coefficients for a given Zernike mode determined for left and right eyes of the same individual. The sign of odd symmetric terms in the right eyes has been changed to test for mirror symmetry (bilateral symmetry predicts that data will fall along the positive diagonal). The solid lines represent a linear fit to the data.

Fig. 3
Fig. 3

(Color online) High-order corneal WAs for the average right and left eye in the study group both properatively as well as one year postoperatively for a 7-mm pupil. The software allowed precise overlapping of the wavefront data for averaging with respect to the reference axis of topography (i.e., the line of sight). A fixed color scale, visually similar to that of commercial videokeratoscopes, was developed for easy interpretation (scale bar in micrometers). Myopic PRK did not appear to significantly influence the mirror-image symmetry of high-order corneal WA between eyes, although there was a large induced increase in spherical aberration.

Fig. 4
Fig. 4

Average PSFs for the right and left eyes as well as for all the eyes of the study group computed from the high-order WA for a 7-mm pupil. PSFs subtend to a visual angle of 30 arc min. Preoperatively (upper row), the combination of all determined high-order Zernike coefficients showed a similar orientation PSF between the right and left eyes. One year after surgery (lower row), spherical aberration dominated the optical image quality of the anterior cornea. There were no significant differences in the orientation PSF between eyes. Also, bilateral PSF was marked similar to monocular PSFs. Over a 7-mm pupil, the preoperative and postoperative mean high-order rms errors were comparable between eyes in our population, as summarized in Table 1.

Fig. 5
Fig. 5

Average PSFs computed over a 4-mm pupil using the second method defined in the text. Before surgery, third-order terms dominated the optical image quality of the central corneal optics; after surgery the effect of spherical aberration largely increased (see Table 1). The preoperative and postoperative mean high-order rms errors were comparable between eyes over a 4-mm pupil (as reported in Table 1).

Fig. 6
Fig. 6

Average PSFs for the right and left eyes as well as for all the eyes of the study group computed over a 7-mm pupil using the second method defined in the text. The optical quality appeared to be worst in comparison with that computed in Fig. 4. Differences between the optical quality of right and left anterior corneas are also highlighted with this method of computation. The binocular PSFs smoothed the monoptical effect of right and left corneas, resulting in an improved image quality in comparison with monocular PSFs both before as well as after surgery.

Tables (4)

Tables Icon

Table 1 Effect of Each Zernike Order on the Mean Total Corneal rms HOA for the Right and Left Eyes of the Study Group over 4- and 7-mm Pupils before As Well As after Surgery

Tables Icon

Table 2 Correlation Coefficients for the High-Order Corneal WA between the Left and Right Eyes of Each Patient of the Study Group for 4-mm Pupil before As Well As after Surgery

Tables Icon

Table 3 Correlation Coefficients for the High-Order Corneal WA between the Left and Right Eyes of Each Patient of the Study Group for 7-mm Pupil before As Well As after Surgery

Tables Icon

Table 4 Interocular Differences in Total Corneal rms HOA ( μ m ) of Each Patient of the Study Group over 4- and 7-mm Pupils before As Well As after Surgery

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PSF = FT ( PF ( x , y ) ) 2 ,
P F ( x , y ) = A ( x , y ) exp [ i 2 π λ W ( x , y ) ] ,

Metrics