Abstract

Different properties of partially polarized light are discussed using the Kullback relative entropy, which provides a physically meaningful measure of proximity between probability density functions (PDFs). For optical waves with a Gaussian PDF, the standard degree of polarization is a simple function of the Kullback relative entropy between the considered optical light and a totally depolarized light of the same intensity. It is shown that the Kullback relative entropies between different PDFs allow one to define other properties such as a degree of anisotropy and a degree of non-Gaussianity. It is also demonstrated that, in dimension three, the Kullback relative entropy between a partially polarized light and a totally depolarized light can lead to natural definitions of two degrees of polarization needed to characterize the polarization state. These analyses enlighten the physical meaning of partial polarization of light waves in terms of a measure of disorder provided by the Shannon entropy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription