Abstract

A thin overlay of higher refractive index than that of the cladding of a long-period fiber grating induces in cladding modes strong variations in effective index, mode profile, cross-coupling coefficient with the core mode, and self-coupling coefficient. Some conditions must be met in order to obtain the highest inducement. The key parameters are the thickness and the refractive index of the overlay, and the ambient refractive index. Under optimum conditions, the sensitivity of the device to variations in any of the critical parameters is improved in a great manner. The result is large shifts of the attenuation bands in the transmission spectrum. If the refractive index of the overlay is complex, there is an additional phenomenon of vanishing of the attenuation bands in the transmission spectrum. This occurs for specific thickness values of the overlay. The problem is solved in two steps: a vectorial analysis of the modes and the application of coupled-mode theory.

© 2006 Optical Society of America

Full Article  |  PDF Article

Errata

Ignacio Del Villar, Ignacio R. Matias, and Francisco J. Arregui, "Influence on cladding mode distribution of overlay deposition on long-period fiber gratings: errata," J. Opt. Soc. Am. A 23, 2969-2969 (2006)
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-23-11-2969

References

  • View by:
  • |
  • |
  • |

  1. J. R. Qiang and H. E. Chen, 'Gain flattening fibre filters using phase shifted long period fibre grating,' Electron. Lett. 34, 1132-1133 (1998).
    [CrossRef]
  2. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, 'Long-period fiber gratings as band rejection filters,' J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  3. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, 'All-optical switching in long period fiber gratings,' Opt. Lett. 22, 883-885 (1997).
    [CrossRef] [PubMed]
  4. K. W. Chung and S. Yin, 'Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,' Opt. Lett. 29, 812-814 (2004).
    [CrossRef] [PubMed]
  5. Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
    [CrossRef]
  6. H. J. Patrick, A. D. Kersey, and F. Bucholtz, 'Analysis of the response of long period fiber gratings to external index of refraction,' J. Lightwave Technol. 16, 1606-1612 (1998).
    [CrossRef]
  7. Y. G. Han, S. B. Lee, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, 'Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,' Opt. Express 11, 476-481 (2003).
    [CrossRef] [PubMed]
  8. V. Bathia, 'Applications of long-period gratings to single and multi-parameter sensing,' Opt. Express 4, 457-466 (1999).
    [CrossRef]
  9. S. W. James and R. P. Tatam, 'Optical fibre long-period grating sensors: characteristics and application,' Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  10. T. Erdogan, 'Cladding-mode resonances in short- and long-period fiber gratings filters,' J. Opt. Soc. Am. A 14, 1760-1773 (1997).
    [CrossRef]
  11. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, 'Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variation,' J. Lightwave Technol. 21, 218-227 (2003).
    [CrossRef]
  12. D. B. Stegall and T. Erdogan, 'Leaky cladding mode propagation in long-period fiber grating devices,' IEEE Photon. Technol. Lett. 11, 343-345 (1999).
    [CrossRef]
  13. Y. Koyamada, 'Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings,' IEEE Photon. Technol. Lett. 13, 308-310 (2001).
    [CrossRef]
  14. Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, 'A quasi-mode interpretation of radiation modes in long-period fiber gratings,' IEEE J. Quantum Electron. 39, 1135-1139 (2003).
    [CrossRef]
  15. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, 'Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,' Opt. Lett. 27, 686-688 (2002).
    [CrossRef]
  16. I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, 'Opitmization of sensitivity in long period fiber gratings,' Opt. Express 13, 56-69 (2005).
    [CrossRef] [PubMed]
  17. I. Del Villar, M. Achaerandio, I. R. Matías, and F. J. Arregui, 'Deposition of an overlay with electrostatic self-assembly method in long period fiber gratings,' Opt. Lett. 30, 720-722 (2005).
    [CrossRef] [PubMed]
  18. I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, 'ESA based in-fiber nanocavity for hydrogen peroxide detection,' IEEE Trans. Nanotechnol. 4, 187-193 (2005).
    [CrossRef]
  19. G. Stewart and B. Culshaw, 'Optical waveguide modelling design for evanescent field chemical sensor,' Opt. Quantum Electron. 26, S249-S259 (1994).
    [CrossRef]

2005

2004

2003

Y. G. Han, S. B. Lee, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, 'Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,' Opt. Express 11, 476-481 (2003).
[CrossRef] [PubMed]

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, 'Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variation,' J. Lightwave Technol. 21, 218-227 (2003).
[CrossRef]

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, 'A quasi-mode interpretation of radiation modes in long-period fiber gratings,' IEEE J. Quantum Electron. 39, 1135-1139 (2003).
[CrossRef]

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
[CrossRef]

S. W. James and R. P. Tatam, 'Optical fibre long-period grating sensors: characteristics and application,' Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

2002

2001

Y. Koyamada, 'Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings,' IEEE Photon. Technol. Lett. 13, 308-310 (2001).
[CrossRef]

1999

D. B. Stegall and T. Erdogan, 'Leaky cladding mode propagation in long-period fiber grating devices,' IEEE Photon. Technol. Lett. 11, 343-345 (1999).
[CrossRef]

V. Bathia, 'Applications of long-period gratings to single and multi-parameter sensing,' Opt. Express 4, 457-466 (1999).
[CrossRef]

1998

H. J. Patrick, A. D. Kersey, and F. Bucholtz, 'Analysis of the response of long period fiber gratings to external index of refraction,' J. Lightwave Technol. 16, 1606-1612 (1998).
[CrossRef]

J. R. Qiang and H. E. Chen, 'Gain flattening fibre filters using phase shifted long period fibre grating,' Electron. Lett. 34, 1132-1133 (1998).
[CrossRef]

1997

1996

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, 'Long-period fiber gratings as band rejection filters,' J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

1994

G. Stewart and B. Culshaw, 'Optical waveguide modelling design for evanescent field chemical sensor,' Opt. Quantum Electron. 26, S249-S259 (1994).
[CrossRef]

Achaerandio, M.

Anemogiannis, E.

Arregui, F. J.

Ashwell, G. J.

Baek, S.

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
[CrossRef]

Bathia, V.

V. Bathia, 'Applications of long-period gratings to single and multi-parameter sensing,' Opt. Express 4, 457-466 (1999).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, 'Long-period fiber gratings as band rejection filters,' J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Bucholtz, F.

Chen, H. E.

J. R. Qiang and H. E. Chen, 'Gain flattening fibre filters using phase shifted long period fibre grating,' Electron. Lett. 34, 1132-1133 (1998).
[CrossRef]

Chung, K. W.

Chung, Y.

Claus, R. O.

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, 'ESA based in-fiber nanocavity for hydrogen peroxide detection,' IEEE Trans. Nanotechnol. 4, 187-193 (2005).
[CrossRef]

Culshaw, B.

G. Stewart and B. Culshaw, 'Optical waveguide modelling design for evanescent field chemical sensor,' Opt. Quantum Electron. 26, S249-S259 (1994).
[CrossRef]

Del Villar, I.

Eggleton, B. J.

Erdogan, T.

D. B. Stegall and T. Erdogan, 'Leaky cladding mode propagation in long-period fiber grating devices,' IEEE Photon. Technol. Lett. 11, 343-345 (1999).
[CrossRef]

T. Erdogan, 'Cladding-mode resonances in short- and long-period fiber gratings filters,' J. Opt. Soc. Am. A 14, 1760-1773 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, 'Long-period fiber gratings as band rejection filters,' J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

Han, Y. G.

James, S. W.

S. W. James and R. P. Tatam, 'Optical fibre long-period grating sensors: characteristics and application,' Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, 'Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,' Opt. Lett. 27, 686-688 (2002).
[CrossRef]

Jeong, Y.

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
[CrossRef]

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, 'A quasi-mode interpretation of radiation modes in long-period fiber gratings,' IEEE J. Quantum Electron. 39, 1135-1139 (2003).
[CrossRef]

Judkins, J. B.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, 'All-optical switching in long period fiber gratings,' Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, 'Long-period fiber gratings as band rejection filters,' J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kang, J. U.

Kersey, A. D.

Kim, C. S.

Kim, H. R.

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
[CrossRef]

Kim, Y.

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
[CrossRef]

Koyamada, Y.

Y. Koyamada, 'Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings,' IEEE Photon. Technol. Lett. 13, 308-310 (2001).
[CrossRef]

Lalanne, P.

Lee, B.

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, 'A quasi-mode interpretation of radiation modes in long-period fiber gratings,' IEEE J. Quantum Electron. 39, 1135-1139 (2003).
[CrossRef]

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
[CrossRef]

Lee, S. B.

Lee, S. D.

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
[CrossRef]

Lee, Y. W.

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, 'Long-period fiber gratings as band rejection filters,' J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Matias, I. R.

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, 'ESA based in-fiber nanocavity for hydrogen peroxide detection,' IEEE Trans. Nanotechnol. 4, 187-193 (2005).
[CrossRef]

Matías, I. R.

Nilsson, J.

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, 'A quasi-mode interpretation of radiation modes in long-period fiber gratings,' IEEE J. Quantum Electron. 39, 1135-1139 (2003).
[CrossRef]

Paek, U. C.

Patrick, H. J.

Qiang, J. R.

J. R. Qiang and H. E. Chen, 'Gain flattening fibre filters using phase shifted long period fibre grating,' Electron. Lett. 34, 1132-1133 (1998).
[CrossRef]

Rees, N. D.

Richardson, D. J.

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, 'A quasi-mode interpretation of radiation modes in long-period fiber gratings,' IEEE J. Quantum Electron. 39, 1135-1139 (2003).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, 'Long-period fiber gratings as band rejection filters,' J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Slusher, R. E.

Stark, J. B.

Stegall, D. B.

D. B. Stegall and T. Erdogan, 'Leaky cladding mode propagation in long-period fiber grating devices,' IEEE Photon. Technol. Lett. 11, 343-345 (1999).
[CrossRef]

Stewart, G.

G. Stewart and B. Culshaw, 'Optical waveguide modelling design for evanescent field chemical sensor,' Opt. Quantum Electron. 26, S249-S259 (1994).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, 'Optical fibre long-period grating sensors: characteristics and application,' Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, 'Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,' Opt. Lett. 27, 686-688 (2002).
[CrossRef]

Vengsarkar, A. M.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, 'All-optical switching in long period fiber gratings,' Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, 'Long-period fiber gratings as band rejection filters,' J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Yin, S.

Electron. Lett.

J. R. Qiang and H. E. Chen, 'Gain flattening fibre filters using phase shifted long period fibre grating,' Electron. Lett. 34, 1132-1133 (1998).
[CrossRef]

IEEE J. Quantum Electron.

Y. Jeong, B. Lee, J. Nilsson, and D. J. Richardson, 'A quasi-mode interpretation of radiation modes in long-period fiber gratings,' IEEE J. Quantum Electron. 39, 1135-1139 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

D. B. Stegall and T. Erdogan, 'Leaky cladding mode propagation in long-period fiber grating devices,' IEEE Photon. Technol. Lett. 11, 343-345 (1999).
[CrossRef]

Y. Koyamada, 'Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings,' IEEE Photon. Technol. Lett. 13, 308-310 (2001).
[CrossRef]

IEEE Trans. Nanotechnol.

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, 'ESA based in-fiber nanocavity for hydrogen peroxide detection,' IEEE Trans. Nanotechnol. 4, 187-193 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Meas. Sci. Technol.

S. W. James and R. P. Tatam, 'Optical fibre long-period grating sensors: characteristics and application,' Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Opt. Eng.

Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee, and B. Lee, 'Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,' Opt. Eng. 42, 964-968 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

G. Stewart and B. Culshaw, 'Optical waveguide modelling design for evanescent field chemical sensor,' Opt. Quantum Electron. 26, S249-S259 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

LPFG structure with deposition of an overlay on the cladding.

Fig. 2
Fig. 2

Effective index as a function of the overlay thickness of (a) the first 15 cladding modes and(b) the core mode and the first six cladding modes.

Fig. 3
Fig. 3

n 2 ( r ) times the radial electric field of the HE 1 , 4 , EH 1 , 3 , and HE 1 , 2 modes for a structure without overlay and the HE 1 , 4 mode for the five overlay thickness values 100, 255, 300, 345, and 500 nm.

Fig. 4
Fig. 4

Self-coupling coefficient for HE 1 , 6 and EH 1 , 7 modes as a function of the overlay thickness.

Fig. 5
Fig. 5

Imaginary effective index as a function of the overlay thickness for HE 1 , 4 , HE 1 , 6 , HE 1 , 8 , HE 1 , 10 , HE 1 , 12 , HE 1 , 14 HE 1 , 16 , and HE 1 , 18 modes.

Fig. 6
Fig. 6

Resonance wavelength shift originated by coupling between the core mode and the first 15 cladding modes as a function of the thickness of the overlay. The overlay refractive index is 1.62, and the ambient index is 1.

Fig. 7
Fig. 7

Derivative of the resonance wavelength ( λ ) as a function of the overlay thickness ( t ) : comparison of (a) HE 1 , 16 and LP 0 , 9 modes and (b) HE 1 , 10 and LP 0 , 6 modes.

Fig. 8
Fig. 8

HE 1 , 16 resonance wavelength as a function of the overlay thickness. The overlay refractive indices are 1.55 and 1.8, and the ambient index is 1.

Fig. 9
Fig. 9

Transmission spectrum showing the EH 1 , 17 , HE 1 , 16 , EH 1 , 15 , and HE 1 , 14 mode resonances for four overlay thickness values: 0, 255, 289, and 335 nm. The overlay refractive index is 1.62, and the ambient index is 1.

Fig. 10
Fig. 10

(a) HE 1 , 16 resonance wavelength as a function of the overlay thickness with the modified Bragg condition and coupled-mode differential equations, (b) coupled-mode differential equations for the maximum attenuation of HE 1 , 16 resonance. The overlay refractive indices analyzed are 1.62 and 1.62 + 0.0025 i , and the ambient index is 1.

Fig. 11
Fig. 11

Transmission spectrum showing the EH 1 , 17 , HE 1 , 16 , EH 1 , 15 , and HE 1 , 14 mode resonances for four overlay thickness values: 0, 255, 289, and 335 nm. The overlay refractive index is 1.62 + 0.0025 i , and the ambient index is 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β 11 ( λ ) β 1 j ( λ ) = 2 π Λ ,
β 11 ( λ ) + s 0 ζ 11 , 11 ( λ ) [ β 0 j ( λ ) + s 0 ζ 1 j , 1 j ( λ ) ] = 2 π Λ ,

Metrics