Abstract

We propose an effective-medium theory for random aggregates of small spherical particles that accounts for the finite size of the embedding volume. The technique is based on the identification of the first two orders of the Born series within a finite volume for the coherent field and the effective field. Although the convergence of the Born series requires a finite volume, the effective constants that are derived through this identification are shown to admit of a large-scale limit. With this approach we recover successively, and in a simple manner, some classical homogenization formulas: the Maxwell Garnett mixing rule, the effective-field approximation, and a finite-size correction to the quasi-crystalline approximation (QCA). The last formula is shown to coincide with the usual low-frequency QCA in the limit of large volumes, while bringing substantial improvements when the dimension of the embedding medium is of the order of the probing wavelength. An application to composite spheres is discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (86)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription