Abstract

In modern high-numerical-aperture (NA) optical scanning instruments, such as scanning microscopes, optical data storage systems, or laser trapping technology, the beam emerging from the high-NA objective focuses deeply through an interface between two media of different refractive index. Such a refractive index mismatch introduces an important amount of spherical aberration, which increases dynamically when scanning at increasing depths. This effect strongly degrades the instrument performance. Although in the past few years many different techniques have been reported to reduce the spherical aberration effect, no optimum solution has been found. Here we concentrate on a technique whose main feature is its simplicity. We refer to the use of purely absorbing beam-shaping elements, which with a minimum modification of optical architecture will allow a significant reduction of the spherical aberration effect. Specifically, we will show that an adequately designed reversed-Gaussian aperture permits the production of a focal spot whose form changes very slowly with the spherical aberration.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription