Abstract

We present what we believe is a new class of composite electromagnetic materials characterized by the concept of metamorphism, which we define in general terms. Metamorphic materials exhibit bulk electromagnetic transitions among states characterized by distinct ranges of values of their reflection coefficient. Each such state has unique physical properties induced by the corresponding values of the reflection coefficient. We present a variety of physical realizations of the concept of metamorphic materials in microwave frequencies, showing with specific metallodielectric designs how transitions among metamorphic states can be obtained at the same frequency, for fixed material geometries, by electronic reconfigurability. We further show how a given material exhibiting certain metamorphic states at a given frequency can transform into a different combination of metamorphic states at different frequencies; i.e., metamorphic materials have a useful dispersive degree of freedom.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. Alexopoulos, G. A. Tadler, and F. W. Schott, "Scattering from an elliptic cylinder loaded with active or passive continuously variable surface impedance," IEEE Trans. Antennas Propag. 22, 132-134 (1974).
    [CrossRef]
  2. N. G. Alexopoulos, P. L. E. Uslenghi, and G. A. Tadler, "Antenna beam scanning by active impedance loading," IEEE Trans. Antennas Propag. 22, 722-723 (1974).
    [CrossRef]
  3. T. B. A. Senior and J. L. Volakis, "Approximate boundary conditions in electromagnetics," IEEE Electromagnetic Waves Series 41 (IEE, 1995).
  4. N. G. Alexopoulos and P. B. Katehi, "On the theory of active surfaces," Report (J. D. Damaskos, Inc., 1980).
  5. C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Metamorphic electromagnetic media," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA '05 (Polytecnico de Torino, 2005) pp. 965-968.
  6. H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, "Effective response functions for photonic bandgap materials," J. Opt. Soc. Am. A 16, 1682-1699 (1999).
    [CrossRef]
  7. C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Effective permittivity and permeability functions of photonic crystals," in Proceedings of the 1999 IEEE Antennas and Propagation Society International Symposium (IEEE, 1999), pp. 1912-1916.
  8. C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Artificial versus natural crystals: effective wave impedance for printed photonic bandgap materials," IEEE Trans. Antennas Propag. 48, 95-106 (2000).
    [CrossRef]
  9. J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  10. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
    [CrossRef]
  11. L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, "An efficient finite element method for the analysis of photonic band-gap materials," in 1999 IEEE MTT-S International Symposium Digest (IEEE, 1999), pp. 1703-1706.
  12. J. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  13. D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
    [CrossRef]
  14. D. R. Smith and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett. 85, 2933-2936 (2000).
    [CrossRef] [PubMed]
  15. P. M. Valanju, R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: always positive and very inhomogeneous," Phys. Rev. Lett. 88, 187401 (2000).
    [CrossRef]
  16. C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Monolithic waveguide filters using printed photonic bandgap materials," IEEE Trans. Microwave Theory Tech. 49, 297-307 (2001).
    [CrossRef]
  17. N. G. Alexopoulos, F. De Flaviis, and Yunhong Liu, "KCA elements in electromagnetically metamorphic objects and interfaces," in Proceedings of Union Radio-Scientifique Internationale International Symposium on Electromagnetic Theory (University of Pisa, 2004), pp. 688-690.
  18. C. won Jung, M.-J. Lee, G. P. Li, and F. De Flaviis, "Single element steerable beam antenna using micro actuators for wireless communication," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA'05 (University of Pisa, 2005), pp. 961-964.

2001 (1)

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Monolithic waveguide filters using printed photonic bandgap materials," IEEE Trans. Microwave Theory Tech. 49, 297-307 (2001).
[CrossRef]

2000 (5)

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Artificial versus natural crystals: effective wave impedance for printed photonic bandgap materials," IEEE Trans. Antennas Propag. 48, 95-106 (2000).
[CrossRef]

J. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

D. R. Smith and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett. 85, 2933-2936 (2000).
[CrossRef] [PubMed]

P. M. Valanju, R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: always positive and very inhomogeneous," Phys. Rev. Lett. 88, 187401 (2000).
[CrossRef]

1999 (3)

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, "Effective response functions for photonic bandgap materials," J. Opt. Soc. Am. A 16, 1682-1699 (1999).
[CrossRef]

1974 (2)

N. G. Alexopoulos, G. A. Tadler, and F. W. Schott, "Scattering from an elliptic cylinder loaded with active or passive continuously variable surface impedance," IEEE Trans. Antennas Propag. 22, 132-134 (1974).
[CrossRef]

N. G. Alexopoulos, P. L. E. Uslenghi, and G. A. Tadler, "Antenna beam scanning by active impedance loading," IEEE Trans. Antennas Propag. 22, 722-723 (1974).
[CrossRef]

Alexopoulos, N. G.

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Monolithic waveguide filters using printed photonic bandgap materials," IEEE Trans. Microwave Theory Tech. 49, 297-307 (2001).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Artificial versus natural crystals: effective wave impedance for printed photonic bandgap materials," IEEE Trans. Antennas Propag. 48, 95-106 (2000).
[CrossRef]

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, "Effective response functions for photonic bandgap materials," J. Opt. Soc. Am. A 16, 1682-1699 (1999).
[CrossRef]

N. G. Alexopoulos, P. L. E. Uslenghi, and G. A. Tadler, "Antenna beam scanning by active impedance loading," IEEE Trans. Antennas Propag. 22, 722-723 (1974).
[CrossRef]

N. G. Alexopoulos, G. A. Tadler, and F. W. Schott, "Scattering from an elliptic cylinder loaded with active or passive continuously variable surface impedance," IEEE Trans. Antennas Propag. 22, 132-134 (1974).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Metamorphic electromagnetic media," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA '05 (Polytecnico de Torino, 2005) pp. 965-968.

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, "An efficient finite element method for the analysis of photonic band-gap materials," in 1999 IEEE MTT-S International Symposium Digest (IEEE, 1999), pp. 1703-1706.

N. G. Alexopoulos and P. B. Katehi, "On the theory of active surfaces," Report (J. D. Damaskos, Inc., 1980).

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Effective permittivity and permeability functions of photonic crystals," in Proceedings of the 1999 IEEE Antennas and Propagation Society International Symposium (IEEE, 1999), pp. 1912-1916.

N. G. Alexopoulos, F. De Flaviis, and Yunhong Liu, "KCA elements in electromagnetically metamorphic objects and interfaces," in Proceedings of Union Radio-Scientifique Internationale International Symposium on Electromagnetic Theory (University of Pisa, 2004), pp. 688-690.

Broas, R. F. J.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

Contopanagos, H. F.

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Monolithic waveguide filters using printed photonic bandgap materials," IEEE Trans. Microwave Theory Tech. 49, 297-307 (2001).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Artificial versus natural crystals: effective wave impedance for printed photonic bandgap materials," IEEE Trans. Antennas Propag. 48, 95-106 (2000).
[CrossRef]

H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, "Effective response functions for photonic bandgap materials," J. Opt. Soc. Am. A 16, 1682-1699 (1999).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Effective permittivity and permeability functions of photonic crystals," in Proceedings of the 1999 IEEE Antennas and Propagation Society International Symposium (IEEE, 1999), pp. 1912-1916.

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Metamorphic electromagnetic media," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA '05 (Polytecnico de Torino, 2005) pp. 965-968.

De Flaviis, F.

N. G. Alexopoulos, F. De Flaviis, and Yunhong Liu, "KCA elements in electromagnetically metamorphic objects and interfaces," in Proceedings of Union Radio-Scientifique Internationale International Symposium on Electromagnetic Theory (University of Pisa, 2004), pp. 688-690.

C. won Jung, M.-J. Lee, G. P. Li, and F. De Flaviis, "Single element steerable beam antenna using micro actuators for wireless communication," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA'05 (University of Pisa, 2005), pp. 961-964.

Holden, A.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Katehi, P. B.

N. G. Alexopoulos and P. B. Katehi, "On the theory of active surfaces," Report (J. D. Damaskos, Inc., 1980).

Kroll, N.

D. R. Smith and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett. 85, 2933-2936 (2000).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

Kyriazidou, C. A.

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Monolithic waveguide filters using printed photonic bandgap materials," IEEE Trans. Microwave Theory Tech. 49, 297-307 (2001).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Artificial versus natural crystals: effective wave impedance for printed photonic bandgap materials," IEEE Trans. Antennas Propag. 48, 95-106 (2000).
[CrossRef]

H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, "Effective response functions for photonic bandgap materials," J. Opt. Soc. Am. A 16, 1682-1699 (1999).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Effective permittivity and permeability functions of photonic crystals," in Proceedings of the 1999 IEEE Antennas and Propagation Society International Symposium (IEEE, 1999), pp. 1912-1916.

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Metamorphic electromagnetic media," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA '05 (Polytecnico de Torino, 2005) pp. 965-968.

Lee, M.-J.

C. won Jung, M.-J. Lee, G. P. Li, and F. De Flaviis, "Single element steerable beam antenna using micro actuators for wireless communication," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA'05 (University of Pisa, 2005), pp. 961-964.

Li, G. P.

C. won Jung, M.-J. Lee, G. P. Li, and F. De Flaviis, "Single element steerable beam antenna using micro actuators for wireless communication," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA'05 (University of Pisa, 2005), pp. 961-964.

Liu, Yunhong

N. G. Alexopoulos, F. De Flaviis, and Yunhong Liu, "KCA elements in electromagnetically metamorphic objects and interfaces," in Proceedings of Union Radio-Scientifique Internationale International Symposium on Electromagnetic Theory (University of Pisa, 2004), pp. 688-690.

Merrill, W. M.

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Artificial versus natural crystals: effective wave impedance for printed photonic bandgap materials," IEEE Trans. Antennas Propag. 48, 95-106 (2000).
[CrossRef]

H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, "Effective response functions for photonic bandgap materials," J. Opt. Soc. Am. A 16, 1682-1699 (1999).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Effective permittivity and permeability functions of photonic crystals," in Proceedings of the 1999 IEEE Antennas and Propagation Society International Symposium (IEEE, 1999), pp. 1912-1916.

Pendry, J.

J. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Robbins, D.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Schott, F. W.

N. G. Alexopoulos, G. A. Tadler, and F. W. Schott, "Scattering from an elliptic cylinder loaded with active or passive continuously variable surface impedance," IEEE Trans. Antennas Propag. 22, 132-134 (1974).
[CrossRef]

Schultz, S.

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

Senior, T. B. A.

T. B. A. Senior and J. L. Volakis, "Approximate boundary conditions in electromagnetics," IEEE Electromagnetic Waves Series 41 (IEE, 1995).

Sievenpiper, D.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, "An efficient finite element method for the analysis of photonic band-gap materials," in 1999 IEEE MTT-S International Symposium Digest (IEEE, 1999), pp. 1703-1706.

Smith, D. R.

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

D. R. Smith and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett. 85, 2933-2936 (2000).
[CrossRef] [PubMed]

Stewart, W.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Tadler, G. A.

N. G. Alexopoulos, P. L. E. Uslenghi, and G. A. Tadler, "Antenna beam scanning by active impedance loading," IEEE Trans. Antennas Propag. 22, 722-723 (1974).
[CrossRef]

N. G. Alexopoulos, G. A. Tadler, and F. W. Schott, "Scattering from an elliptic cylinder loaded with active or passive continuously variable surface impedance," IEEE Trans. Antennas Propag. 22, 132-134 (1974).
[CrossRef]

Uslenghi, P. L. E.

N. G. Alexopoulos, P. L. E. Uslenghi, and G. A. Tadler, "Antenna beam scanning by active impedance loading," IEEE Trans. Antennas Propag. 22, 722-723 (1974).
[CrossRef]

Valanju, A. P.

P. M. Valanju, R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: always positive and very inhomogeneous," Phys. Rev. Lett. 88, 187401 (2000).
[CrossRef]

Valanju, P. M.

P. M. Valanju, R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: always positive and very inhomogeneous," Phys. Rev. Lett. 88, 187401 (2000).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

Volakis, J. L.

T. B. A. Senior and J. L. Volakis, "Approximate boundary conditions in electromagnetics," IEEE Electromagnetic Waves Series 41 (IEE, 1995).

Walser, R. M.

P. M. Valanju, R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: always positive and very inhomogeneous," Phys. Rev. Lett. 88, 187401 (2000).
[CrossRef]

won Jung, C.

C. won Jung, M.-J. Lee, G. P. Li, and F. De Flaviis, "Single element steerable beam antenna using micro actuators for wireless communication," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA'05 (University of Pisa, 2005), pp. 961-964.

Yablonovitch, E.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, "An efficient finite element method for the analysis of photonic band-gap materials," in 1999 IEEE MTT-S International Symposium Digest (IEEE, 1999), pp. 1703-1706.

Zhang, L.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, "An efficient finite element method for the analysis of photonic band-gap materials," in 1999 IEEE MTT-S International Symposium Digest (IEEE, 1999), pp. 1703-1706.

Appl. Phys. Lett. (1)

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

IEEE Trans. Antennas Propag. (3)

N. G. Alexopoulos, G. A. Tadler, and F. W. Schott, "Scattering from an elliptic cylinder loaded with active or passive continuously variable surface impedance," IEEE Trans. Antennas Propag. 22, 132-134 (1974).
[CrossRef]

N. G. Alexopoulos, P. L. E. Uslenghi, and G. A. Tadler, "Antenna beam scanning by active impedance loading," IEEE Trans. Antennas Propag. 22, 722-723 (1974).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Artificial versus natural crystals: effective wave impedance for printed photonic bandgap materials," IEEE Trans. Antennas Propag. 48, 95-106 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

J. Pendry, A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Monolithic waveguide filters using printed photonic bandgap materials," IEEE Trans. Microwave Theory Tech. 49, 297-307 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Phys. Rev. Lett. (3)

D. R. Smith and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett. 85, 2933-2936 (2000).
[CrossRef] [PubMed]

P. M. Valanju, R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: always positive and very inhomogeneous," Phys. Rev. Lett. 88, 187401 (2000).
[CrossRef]

J. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Other (7)

N. G. Alexopoulos, F. De Flaviis, and Yunhong Liu, "KCA elements in electromagnetically metamorphic objects and interfaces," in Proceedings of Union Radio-Scientifique Internationale International Symposium on Electromagnetic Theory (University of Pisa, 2004), pp. 688-690.

C. won Jung, M.-J. Lee, G. P. Li, and F. De Flaviis, "Single element steerable beam antenna using micro actuators for wireless communication," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA'05 (University of Pisa, 2005), pp. 961-964.

C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos, "Effective permittivity and permeability functions of photonic crystals," in Proceedings of the 1999 IEEE Antennas and Propagation Society International Symposium (IEEE, 1999), pp. 1912-1916.

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, "An efficient finite element method for the analysis of photonic band-gap materials," in 1999 IEEE MTT-S International Symposium Digest (IEEE, 1999), pp. 1703-1706.

T. B. A. Senior and J. L. Volakis, "Approximate boundary conditions in electromagnetics," IEEE Electromagnetic Waves Series 41 (IEE, 1995).

N. G. Alexopoulos and P. B. Katehi, "On the theory of active surfaces," Report (J. D. Damaskos, Inc., 1980).

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, "Metamorphic electromagnetic media," in Proceedings of 9th International Conference on Electromagnetics in Advanced Applications ICEAA '05 (Polytecnico de Torino, 2005) pp. 965-968.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Variation of the real part of the bulk reflection coefficient according to theoretical variations of the relative complex wave impedance. Im { η } is varied parametrically at values ± 0.1 (thick black curve), ± 0.5 (thick gray curve), ± 1 (thin black curve), and ± 10 (thin gray curve).

Fig. 2
Fig. 2

(a) D 11 , circular metal disks of radius r, within a unit cell (a,b,c). (b) D 12 , metal screen with circular holes.

Fig. 3
Fig. 3

(a) D 21 , overlapping metal disks. (b) D 22 , metal screen with overlapping holes.

Fig. 4
Fig. 4

(a) D 31 , circular metal disks shorted with metal strips. (b) D 32 , metal screen with connected holes.

Fig. 5
Fig. 5

Normal plane-wave incidence on D 11 . (a) Reflected (black curve) and transmitted (gray curve) power and the first two EBG regions. (b) Real (black curve) and imaginary (gray curve) parts of the medium’s reflection coefficient.

Fig. 6
Fig. 6

Normal plane-wave incidence on Babinet-complementary material D 12 . (a) Reflected (black curve) and transmitted (gray curve) power. (b) Real (black curve) and imaginary (gray curve) parts of the medium’s reflection coefficient.

Fig. 7
Fig. 7

Normal plane-wave incidence on material D 31 . (a) Reflected (black curve) and transmitted (gray curve) power. (b) Real (black curve) and imaginary (gray curve) parts of the medium’s reflection coefficient.

Fig. 8
Fig. 8

Normal plane-wave incidence on material D 32 . (a) Reflected (black curve) and transmitted (gray curve) power. (b) Real (black curve) and imaginary (gray curve) parts of the medium’s reflection coefficient.

Fig. 9
Fig. 9

Two-state metamorphic material under normal plane-wave incidence. The two metamorphic states are (a) [ D 11 (black curve), D 31 (gray curve)] (b) [ D 12 (gray curve), D 32 (black curve)].

Fig. 10
Fig. 10

(a) Third state of the metamorphic material under normal plane-wave incidence. (b) Real (black curve) and imaginary (gray curve) parts of the medium’s reflection coefficient. The three electronically reconfigurable states are D 11 , D 31 , and this figure.

Fig. 11
Fig. 11

Three-state metamorphic materials of Table 3. (a) Higher-frequency realization and (b) a lower-frequency realization with a material of the same size.

Tables (3)

Tables Icon

Table 1 Definition of Metamorphic States

Tables Icon

Table 2 Summary of the Geometries Used and Their Complementarity Properties

Tables Icon

Table 3 Active Lattice of Switches Applied on Design D 11 (Metal Disk Medium) and Corresponding Metamorphic States at 31 and 21 GHz

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ = η d η 0 η d + η 0 = η d η 0 1 η d η 0 + 1 = η r + i η i 1 η r + i η i + 1 ,

Metrics