Abstract

The reflectance spectra of chirped fiber Bragg gratings can depend substantially on the direction from which the measurement is taken. The measured difference between forward and backward reflectance spectra measured in a linearly chirped grating was shown to be due to the measured excess loss. Simulation using the popular transfer-matrix model demonstrated that the observed asymmetric behavior could be obtained only when excess loss has an asymmetric spectral shape about the local Bragg wavelengths. Application of cladding mode excess losses to the result of a transfer-matrix model accounted for the experimental observation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Pan and Y. Shi, "Steep skirt fibre Bragg grating fabrication using a new apodised phase mask," Electron. Lett. 33, 1895-1896 (1997).
    [CrossRef]
  2. R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, "Novel method of producing all fiber photoinduced compensating gratings," Electron. Lett. 30, 996-998 (1994).
    [CrossRef]
  3. T. Komukai and M. Nakazawa, "Long-phase error-free fiber Bragg gratings," IEEE Photon. Technol. Lett. 10, 687-689 (1998).
    [CrossRef]
  4. Y. Nasu and S. Yamashita, "Multiple phase-shift superstructure fibre Bragg grating for DWDM systems," Electron. Lett. 37, 1470-1471 (2001).
    [CrossRef]
  5. M. Nakazawa and T. Komukai, "Fabrication of high-quality long-fiber Bragg grating by monitoring 3.1-eV radiation (400 nm) from GeO defects," IEEE Photon. Technol. Lett. 8, 1495-1497 (1996).
    [CrossRef]
  6. R. Kashap, Fiber Bragg Gratings (Academic, 1999).
  7. L. Poladian, "Resonance mode expansions and exact solutions for nonuniform gratings," Phys. Rev. E 54, 2963-2975 (1996).
    [CrossRef]
  8. V. M. N. Passaro, R. Diana, and M. N. Armenise, "Optical fiber Bragg gratings. Part II. Modeling of finite-length gratings and grating arrays," J. Opt. Soc. Am. A 19, 1855-1866 (2002).
    [CrossRef]
  9. J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001).
    [CrossRef]
  10. M. McCall, "On the application of coupled mode theory for modeling fiber Bragg gratings," J. Lightwave Technol. 18, 236-242 (2000).
    [CrossRef]
  11. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]
  12. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  13. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1302 (1997).
    [CrossRef]
  14. F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt. Lett. 12, 847-849 (1987).
    [CrossRef] [PubMed]
  15. P. L. Mason, R. V. Penty, and I. H. White, "Multiple stage dispersion compensation in long haul optical fibre systems using chirped fibre Bragg gratings," Electron. Lett. 30, 1244-1245 (1994).
    [CrossRef]
  16. R. Kashyap, A. Ellis, D. Malyon, H. G. Frochlich, A. Swanton, and D. J. Armes, "Eight wavelength×10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth 1.3metre long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds," in Proceedings of the European Conference on Optical Communication (ECOC, 1996), Vol. 5, pp. 5-10.
  17. D. Garthe, H. N. Rourke, G. Milner, A. Fielding, and S. J. Clements, "System performance of practical broadband dispersion compensating gratings," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 74-75.
  18. M. Ibsen, M. K. Durkin, M. N. Zerva, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
    [CrossRef]
  19. H. Li, Y. Nakumura, K. Ogusu, Y. Sheng, and J. E. Rothernburg, "Influence of cladding-mode coupling losses on the spectrum of a linearly chirped multi-channel fiber Bragg grating," Opt. Express 13, 1281-1290 (2005).
    [CrossRef] [PubMed]
  20. M. K. Durkin, M. Ibsen, and R. I. Laming, "Equalisation of spectral non-uniformities in broad-band chirped fibre gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications andFundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 231-233.
  21. S. Huang, M. Ohn, M. LeBlanc, and R. M. Measures, "Continuous arbitrary strain profile measurements with fiber Bragg gratings," Smart Mater. Struct. 7, 248-256 (1998).
    [CrossRef]
  22. M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, "Measurement of arbitrary strain profiles within fibre gratings," Electron. Lett. 32, 1028-1029 (1996).
    [CrossRef]
  23. P. C. Won, J. Leng, Y. Lai, and J. A. R. Williams, "Distributed temperature sensing using a chirped fibre Bragg grating," Meas. Sci. Technol. 15, 1501-1505 (2004).
    [CrossRef]
  24. K. Peters, P. Pattis, J. Botsis, and P. Giaccari, "Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields," Opt. Lasers Eng. 33, 107-119 (2000).
    [CrossRef]
  25. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  26. R. M. Measures, "Advances toward fiber optic based smart structures," Opt. Eng. 31, 34-47 (1992).
    [CrossRef]
  27. Y. Okabe, R. Tsuji, and N. Takeda, "Application of chirped fiber Bragg grating sensors for identification of crack locations in composites," Composites, Part A 35, 59-65 (2004).
    [CrossRef]
  28. A. Nand, D. J. Kitcher, S. A. Wade, G. W. Baxter, and S. F. Collins, "Temperature profile measurements within a chirped fiber Bragg grating using a Fourier transform technique," in Proc. SPIE 5855, 820-823 (2005).
    [CrossRef]
  29. J. Skarr and H. E. Engan, "Distributed intragrating sensing using phase retrieval," in Proc. SPIE 3746, 588-591 (1999).
  30. F. Casagrande, P. Crespi, A. M. Grassi, A. Lulli, R. P. Kenny, and M. P. Whalen, "From the reflected spectrum to the properties of a fiber Bragg grating: a genetic algorithm approach with application to distributed strain sensing," Appl. Opt. 41, 5238-5243 (2002).
    [CrossRef] [PubMed]
  31. H. C. Cheng and Y. L. Lo, "The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally modulated intensity spectra," J. Lightwave Technol. 23, 2158-2168 (2005).
    [CrossRef]
  32. J. Azana and M. A. Muriel, "Reconstruction of fiber grating period profiles by use of Wigner-Ville distributions and spectrograms," J. Opt. Soc. Am. A 17, 2496-2505 (2000).
    [CrossRef]
  33. J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003).
    [CrossRef]
  34. P. I. Reyes, M. Sumetsky, N. M. Litchinitser, and P. S. Westbrook, "Reduction of group delay ripple of multi-channel chirped fiber gratings using adiabatic UV correction," Opt. Express 12, 2676-2687 (2004).
    [CrossRef] [PubMed]
  35. A. Mugnier, E. Goyat, P. Lesueur, and D. Pureur, "Wide tuning range and low insertion loss variation dispersion compensator," Electron. Lett. 40, 1506-1508 (2004).
    [CrossRef]
  36. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
    [CrossRef]

2005

2004

Y. Okabe, R. Tsuji, and N. Takeda, "Application of chirped fiber Bragg grating sensors for identification of crack locations in composites," Composites, Part A 35, 59-65 (2004).
[CrossRef]

P. I. Reyes, M. Sumetsky, N. M. Litchinitser, and P. S. Westbrook, "Reduction of group delay ripple of multi-channel chirped fiber gratings using adiabatic UV correction," Opt. Express 12, 2676-2687 (2004).
[CrossRef] [PubMed]

A. Mugnier, E. Goyat, P. Lesueur, and D. Pureur, "Wide tuning range and low insertion loss variation dispersion compensator," Electron. Lett. 40, 1506-1508 (2004).
[CrossRef]

P. C. Won, J. Leng, Y. Lai, and J. A. R. Williams, "Distributed temperature sensing using a chirped fibre Bragg grating," Meas. Sci. Technol. 15, 1501-1505 (2004).
[CrossRef]

2003

J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003).
[CrossRef]

2002

2001

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

Y. Nasu and S. Yamashita, "Multiple phase-shift superstructure fibre Bragg grating for DWDM systems," Electron. Lett. 37, 1470-1471 (2001).
[CrossRef]

2000

M. McCall, "On the application of coupled mode theory for modeling fiber Bragg gratings," J. Lightwave Technol. 18, 236-242 (2000).
[CrossRef]

K. Peters, P. Pattis, J. Botsis, and P. Giaccari, "Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields," Opt. Lasers Eng. 33, 107-119 (2000).
[CrossRef]

M. Ibsen, M. K. Durkin, M. N. Zerva, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

J. Azana and M. A. Muriel, "Reconstruction of fiber grating period profiles by use of Wigner-Ville distributions and spectrograms," J. Opt. Soc. Am. A 17, 2496-2505 (2000).
[CrossRef]

1999

J. Skarr and H. E. Engan, "Distributed intragrating sensing using phase retrieval," in Proc. SPIE 3746, 588-591 (1999).

1998

S. Huang, M. Ohn, M. LeBlanc, and R. M. Measures, "Continuous arbitrary strain profile measurements with fiber Bragg gratings," Smart Mater. Struct. 7, 248-256 (1998).
[CrossRef]

T. Komukai and M. Nakazawa, "Long-phase error-free fiber Bragg gratings," IEEE Photon. Technol. Lett. 10, 687-689 (1998).
[CrossRef]

1997

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1302 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

J. J. Pan and Y. Shi, "Steep skirt fibre Bragg grating fabrication using a new apodised phase mask," Electron. Lett. 33, 1895-1896 (1997).
[CrossRef]

1996

M. Nakazawa and T. Komukai, "Fabrication of high-quality long-fiber Bragg grating by monitoring 3.1-eV radiation (400 nm) from GeO defects," IEEE Photon. Technol. Lett. 8, 1495-1497 (1996).
[CrossRef]

L. Poladian, "Resonance mode expansions and exact solutions for nonuniform gratings," Phys. Rev. E 54, 2963-2975 (1996).
[CrossRef]

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, "Measurement of arbitrary strain profiles within fibre gratings," Electron. Lett. 32, 1028-1029 (1996).
[CrossRef]

1995

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

1994

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, "Novel method of producing all fiber photoinduced compensating gratings," Electron. Lett. 30, 996-998 (1994).
[CrossRef]

P. L. Mason, R. V. Penty, and I. H. White, "Multiple stage dispersion compensation in long haul optical fibre systems using chirped fibre Bragg gratings," Electron. Lett. 30, 1244-1245 (1994).
[CrossRef]

1992

R. M. Measures, "Advances toward fiber optic based smart structures," Opt. Eng. 31, 34-47 (1992).
[CrossRef]

1989

1987

Armenise, M. N.

Armes, D. J.

R. Kashyap, A. Ellis, D. Malyon, H. G. Frochlich, A. Swanton, and D. J. Armes, "Eight wavelength×10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth 1.3metre long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds," in Proceedings of the European Conference on Optical Communication (ECOC, 1996), Vol. 5, pp. 5-10.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Azana, J.

Baxter, G. W.

A. Nand, D. J. Kitcher, S. A. Wade, G. W. Baxter, and S. F. Collins, "Temperature profile measurements within a chirped fiber Bragg grating using a Fourier transform technique," in Proc. SPIE 5855, 820-823 (2005).
[CrossRef]

Bennion, I.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Botsis, J.

K. Peters, P. Pattis, J. Botsis, and P. Giaccari, "Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields," Opt. Lasers Eng. 33, 107-119 (2000).
[CrossRef]

Campbell, R. J.

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, "Novel method of producing all fiber photoinduced compensating gratings," Electron. Lett. 30, 996-998 (1994).
[CrossRef]

Casagrande, F.

Cheng, H. C.

Clements, S. J.

D. Garthe, H. N. Rourke, G. Milner, A. Fielding, and S. J. Clements, "System performance of practical broadband dispersion compensating gratings," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 74-75.

Cole, M. J.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, "Measurement of arbitrary strain profiles within fibre gratings," Electron. Lett. 32, 1028-1029 (1996).
[CrossRef]

Collins, S. F.

A. Nand, D. J. Kitcher, S. A. Wade, G. W. Baxter, and S. F. Collins, "Temperature profile measurements within a chirped fiber Bragg grating using a Fourier transform technique," in Proc. SPIE 5855, 820-823 (2005).
[CrossRef]

Crespi, P.

Dakin, J. P.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, "Measurement of arbitrary strain profiles within fibre gratings," Electron. Lett. 32, 1028-1029 (1996).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Diana, R.

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. N. Zerva, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

M. K. Durkin, M. Ibsen, and R. I. Laming, "Equalisation of spectral non-uniformities in broad-band chirped fibre gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications andFundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 231-233.

Ellis, A.

R. Kashyap, A. Ellis, D. Malyon, H. G. Frochlich, A. Swanton, and D. J. Armes, "Eight wavelength×10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth 1.3metre long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds," in Proceedings of the European Conference on Optical Communication (ECOC, 1996), Vol. 5, pp. 5-10.

Engan, H. E.

J. Skarr and H. E. Engan, "Distributed intragrating sensing using phase retrieval," in Proc. SPIE 3746, 588-591 (1999).

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1302 (1997).
[CrossRef]

Fermann, M. E.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Fielding, A.

D. Garthe, H. N. Rourke, G. Milner, A. Fielding, and S. J. Clements, "System performance of practical broadband dispersion compensating gratings," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 74-75.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Frochlich, H. G.

R. Kashyap, A. Ellis, D. Malyon, H. G. Frochlich, A. Swanton, and D. J. Armes, "Eight wavelength×10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth 1.3metre long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds," in Proceedings of the European Conference on Optical Communication (ECOC, 1996), Vol. 5, pp. 5-10.

Galvanauskas, A.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Garthe, D.

D. Garthe, H. N. Rourke, G. Milner, A. Fielding, and S. J. Clements, "System performance of practical broadband dispersion compensating gratings," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 74-75.

Geiger, H.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, "Measurement of arbitrary strain profiles within fibre gratings," Electron. Lett. 32, 1028-1029 (1996).
[CrossRef]

Giaccari, P.

K. Peters, P. Pattis, J. Botsis, and P. Giaccari, "Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields," Opt. Lasers Eng. 33, 107-119 (2000).
[CrossRef]

Glenn, W. H.

Goyat, E.

A. Mugnier, E. Goyat, P. Lesueur, and D. Pureur, "Wide tuning range and low insertion loss variation dispersion compensator," Electron. Lett. 40, 1506-1508 (2004).
[CrossRef]

Grassi, A. M.

Grudinin, A. B.

M. Ibsen, M. K. Durkin, M. N. Zerva, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Harter, D.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Huang, S.

S. Huang, M. Ohn, M. LeBlanc, and R. M. Measures, "Continuous arbitrary strain profile measurements with fiber Bragg gratings," Smart Mater. Struct. 7, 248-256 (1998).
[CrossRef]

Ibsen, M.

M. Ibsen, M. K. Durkin, M. N. Zerva, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

M. K. Durkin, M. Ibsen, and R. I. Laming, "Equalisation of spectral non-uniformities in broad-band chirped fibre gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications andFundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 231-233.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kashap, R.

R. Kashap, Fiber Bragg Gratings (Academic, 1999).

Kashyap, R.

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, "Novel method of producing all fiber photoinduced compensating gratings," Electron. Lett. 30, 996-998 (1994).
[CrossRef]

R. Kashyap, A. Ellis, D. Malyon, H. G. Frochlich, A. Swanton, and D. J. Armes, "Eight wavelength×10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth 1.3metre long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds," in Proceedings of the European Conference on Optical Communication (ECOC, 1996), Vol. 5, pp. 5-10.

Kenny, R. P.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Kitcher, D. J.

A. Nand, D. J. Kitcher, S. A. Wade, G. W. Baxter, and S. F. Collins, "Temperature profile measurements within a chirped fiber Bragg grating using a Fourier transform technique," in Proc. SPIE 5855, 820-823 (2005).
[CrossRef]

Komukai, T.

T. Komukai and M. Nakazawa, "Long-phase error-free fiber Bragg gratings," IEEE Photon. Technol. Lett. 10, 687-689 (1998).
[CrossRef]

M. Nakazawa and T. Komukai, "Fabrication of high-quality long-fiber Bragg grating by monitoring 3.1-eV radiation (400 nm) from GeO defects," IEEE Photon. Technol. Lett. 8, 1495-1497 (1996).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lai, Y.

P. C. Won, J. Leng, Y. Lai, and J. A. R. Williams, "Distributed temperature sensing using a chirped fibre Bragg grating," Meas. Sci. Technol. 15, 1501-1505 (2004).
[CrossRef]

Laming, R. I.

M. Ibsen, M. K. Durkin, M. N. Zerva, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

M. K. Durkin, M. Ibsen, and R. I. Laming, "Equalisation of spectral non-uniformities in broad-band chirped fibre gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications andFundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 231-233.

LeBlanc, M.

S. Huang, M. Ohn, M. LeBlanc, and R. M. Measures, "Continuous arbitrary strain profile measurements with fiber Bragg gratings," Smart Mater. Struct. 7, 248-256 (1998).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Leng, J.

P. C. Won, J. Leng, Y. Lai, and J. A. R. Williams, "Distributed temperature sensing using a chirped fibre Bragg grating," Meas. Sci. Technol. 15, 1501-1505 (2004).
[CrossRef]

Lesueur, P.

A. Mugnier, E. Goyat, P. Lesueur, and D. Pureur, "Wide tuning range and low insertion loss variation dispersion compensator," Electron. Lett. 40, 1506-1508 (2004).
[CrossRef]

Li, H.

Litchinitser, N. M.

Lo, Y. L.

Lulli, A.

Malyon, D.

R. Kashyap, A. Ellis, D. Malyon, H. G. Frochlich, A. Swanton, and D. J. Armes, "Eight wavelength×10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth 1.3metre long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds," in Proceedings of the European Conference on Optical Communication (ECOC, 1996), Vol. 5, pp. 5-10.

Mason, P. L.

P. L. Mason, R. V. Penty, and I. H. White, "Multiple stage dispersion compensation in long haul optical fibre systems using chirped fibre Bragg gratings," Electron. Lett. 30, 1244-1245 (1994).
[CrossRef]

McCall, M.

McKee, P. F.

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, "Novel method of producing all fiber photoinduced compensating gratings," Electron. Lett. 30, 996-998 (1994).
[CrossRef]

Measures, R. M.

S. Huang, M. Ohn, M. LeBlanc, and R. M. Measures, "Continuous arbitrary strain profile measurements with fiber Bragg gratings," Smart Mater. Struct. 7, 248-256 (1998).
[CrossRef]

R. M. Measures, "Advances toward fiber optic based smart structures," Opt. Eng. 31, 34-47 (1992).
[CrossRef]

Meltz, G.

Milner, G.

D. Garthe, H. N. Rourke, G. Milner, A. Fielding, and S. J. Clements, "System performance of practical broadband dispersion compensating gratings," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 74-75.

Morey, W. W.

Mugnier, A.

A. Mugnier, E. Goyat, P. Lesueur, and D. Pureur, "Wide tuning range and low insertion loss variation dispersion compensator," Electron. Lett. 40, 1506-1508 (2004).
[CrossRef]

Muriel, M. A.

Nakazawa, M.

T. Komukai and M. Nakazawa, "Long-phase error-free fiber Bragg gratings," IEEE Photon. Technol. Lett. 10, 687-689 (1998).
[CrossRef]

M. Nakazawa and T. Komukai, "Fabrication of high-quality long-fiber Bragg grating by monitoring 3.1-eV radiation (400 nm) from GeO defects," IEEE Photon. Technol. Lett. 8, 1495-1497 (1996).
[CrossRef]

Nakumura, Y.

Nand, A.

A. Nand, D. J. Kitcher, S. A. Wade, G. W. Baxter, and S. F. Collins, "Temperature profile measurements within a chirped fiber Bragg grating using a Fourier transform technique," in Proc. SPIE 5855, 820-823 (2005).
[CrossRef]

Nasu, Y.

Y. Nasu and S. Yamashita, "Multiple phase-shift superstructure fibre Bragg grating for DWDM systems," Electron. Lett. 37, 1470-1471 (2001).
[CrossRef]

Ogusu, K.

Ohn, M.

S. Huang, M. Ohn, M. LeBlanc, and R. M. Measures, "Continuous arbitrary strain profile measurements with fiber Bragg gratings," Smart Mater. Struct. 7, 248-256 (1998).
[CrossRef]

Okabe, Y.

Y. Okabe, R. Tsuji, and N. Takeda, "Application of chirped fiber Bragg grating sensors for identification of crack locations in composites," Composites, Part A 35, 59-65 (2004).
[CrossRef]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Ouellette, F.

Pan, J. J.

J. J. Pan and Y. Shi, "Steep skirt fibre Bragg grating fabrication using a new apodised phase mask," Electron. Lett. 33, 1895-1896 (1997).
[CrossRef]

Passaro, V. M. N.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Pattis, P.

K. Peters, P. Pattis, J. Botsis, and P. Giaccari, "Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields," Opt. Lasers Eng. 33, 107-119 (2000).
[CrossRef]

Penty, R. V.

P. L. Mason, R. V. Penty, and I. H. White, "Multiple stage dispersion compensation in long haul optical fibre systems using chirped fibre Bragg gratings," Electron. Lett. 30, 1244-1245 (1994).
[CrossRef]

Peters, K.

K. Peters, P. Pattis, J. Botsis, and P. Giaccari, "Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields," Opt. Lasers Eng. 33, 107-119 (2000).
[CrossRef]

Poladian, L.

L. Poladian, "Resonance mode expansions and exact solutions for nonuniform gratings," Phys. Rev. E 54, 2963-2975 (1996).
[CrossRef]

Pureur, D.

A. Mugnier, E. Goyat, P. Lesueur, and D. Pureur, "Wide tuning range and low insertion loss variation dispersion compensator," Electron. Lett. 40, 1506-1508 (2004).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Reyes, P. I.

Rothernburg, J. E.

Rourke, H. N.

D. Garthe, H. N. Rourke, G. Milner, A. Fielding, and S. J. Clements, "System performance of practical broadband dispersion compensating gratings," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 74-75.

Sheng, Y.

Shi, Y.

J. J. Pan and Y. Shi, "Steep skirt fibre Bragg grating fabrication using a new apodised phase mask," Electron. Lett. 33, 1895-1896 (1997).
[CrossRef]

Skaar, J.

J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003).
[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

Skarr, J.

J. Skarr and H. E. Engan, "Distributed intragrating sensing using phase retrieval," in Proc. SPIE 3746, 588-591 (1999).

Sugden, K.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Sumetsky, M.

Swanton, A.

R. Kashyap, A. Ellis, D. Malyon, H. G. Frochlich, A. Swanton, and D. J. Armes, "Eight wavelength×10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth 1.3metre long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds," in Proceedings of the European Conference on Optical Communication (ECOC, 1996), Vol. 5, pp. 5-10.

Takeda, N.

Y. Okabe, R. Tsuji, and N. Takeda, "Application of chirped fiber Bragg grating sensors for identification of crack locations in composites," Composites, Part A 35, 59-65 (2004).
[CrossRef]

Tsuji, R.

Y. Okabe, R. Tsuji, and N. Takeda, "Application of chirped fiber Bragg grating sensors for identification of crack locations in composites," Composites, Part A 35, 59-65 (2004).
[CrossRef]

Volanthen, M.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, "Measurement of arbitrary strain profiles within fibre gratings," Electron. Lett. 32, 1028-1029 (1996).
[CrossRef]

Waagaard, O. H.

J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003).
[CrossRef]

Wade, S. A.

A. Nand, D. J. Kitcher, S. A. Wade, G. W. Baxter, and S. F. Collins, "Temperature profile measurements within a chirped fiber Bragg grating using a Fourier transform technique," in Proc. SPIE 5855, 820-823 (2005).
[CrossRef]

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

Westbrook, P. S.

Whalen, M. P.

White, I. H.

P. L. Mason, R. V. Penty, and I. H. White, "Multiple stage dispersion compensation in long haul optical fibre systems using chirped fibre Bragg gratings," Electron. Lett. 30, 1244-1245 (1994).
[CrossRef]

Williams, D. L.

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, "Novel method of producing all fiber photoinduced compensating gratings," Electron. Lett. 30, 996-998 (1994).
[CrossRef]

Williams, J. A. R.

P. C. Won, J. Leng, Y. Lai, and J. A. R. Williams, "Distributed temperature sensing using a chirped fibre Bragg grating," Meas. Sci. Technol. 15, 1501-1505 (2004).
[CrossRef]

Won, P. C.

P. C. Won, J. Leng, Y. Lai, and J. A. R. Williams, "Distributed temperature sensing using a chirped fibre Bragg grating," Meas. Sci. Technol. 15, 1501-1505 (2004).
[CrossRef]

Yamashita, S.

Y. Nasu and S. Yamashita, "Multiple phase-shift superstructure fibre Bragg grating for DWDM systems," Electron. Lett. 37, 1470-1471 (2001).
[CrossRef]

Zerva, M. N.

M. Ibsen, M. K. Durkin, M. N. Zerva, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Composites, Part A

Y. Okabe, R. Tsuji, and N. Takeda, "Application of chirped fiber Bragg grating sensors for identification of crack locations in composites," Composites, Part A 35, 59-65 (2004).
[CrossRef]

Electron. Lett.

M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, "Measurement of arbitrary strain profiles within fibre gratings," Electron. Lett. 32, 1028-1029 (1996).
[CrossRef]

A. Mugnier, E. Goyat, P. Lesueur, and D. Pureur, "Wide tuning range and low insertion loss variation dispersion compensator," Electron. Lett. 40, 1506-1508 (2004).
[CrossRef]

J. J. Pan and Y. Shi, "Steep skirt fibre Bragg grating fabrication using a new apodised phase mask," Electron. Lett. 33, 1895-1896 (1997).
[CrossRef]

R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams, "Novel method of producing all fiber photoinduced compensating gratings," Electron. Lett. 30, 996-998 (1994).
[CrossRef]

Y. Nasu and S. Yamashita, "Multiple phase-shift superstructure fibre Bragg grating for DWDM systems," Electron. Lett. 37, 1470-1471 (2001).
[CrossRef]

P. L. Mason, R. V. Penty, and I. H. White, "Multiple stage dispersion compensation in long haul optical fibre systems using chirped fibre Bragg gratings," Electron. Lett. 30, 1244-1245 (1994).
[CrossRef]

IEEE J. Quantum Electron.

J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Nakazawa and T. Komukai, "Fabrication of high-quality long-fiber Bragg grating by monitoring 3.1-eV radiation (400 nm) from GeO defects," IEEE Photon. Technol. Lett. 8, 1495-1497 (1996).
[CrossRef]

T. Komukai and M. Nakazawa, "Long-phase error-free fiber Bragg gratings," IEEE Photon. Technol. Lett. 10, 687-689 (1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. N. Zerva, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1302 (1997).
[CrossRef]

M. McCall, "On the application of coupled mode theory for modeling fiber Bragg gratings," J. Lightwave Technol. 18, 236-242 (2000).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

H. C. Cheng and Y. L. Lo, "The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally modulated intensity spectra," J. Lightwave Technol. 23, 2158-2168 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

P. C. Won, J. Leng, Y. Lai, and J. A. R. Williams, "Distributed temperature sensing using a chirped fibre Bragg grating," Meas. Sci. Technol. 15, 1501-1505 (2004).
[CrossRef]

Opt. Eng.

R. M. Measures, "Advances toward fiber optic based smart structures," Opt. Eng. 31, 34-47 (1992).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

K. Peters, P. Pattis, J. Botsis, and P. Giaccari, "Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields," Opt. Lasers Eng. 33, 107-119 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. E

L. Poladian, "Resonance mode expansions and exact solutions for nonuniform gratings," Phys. Rev. E 54, 2963-2975 (1996).
[CrossRef]

Proc. SPIE

A. Nand, D. J. Kitcher, S. A. Wade, G. W. Baxter, and S. F. Collins, "Temperature profile measurements within a chirped fiber Bragg grating using a Fourier transform technique," in Proc. SPIE 5855, 820-823 (2005).
[CrossRef]

J. Skarr and H. E. Engan, "Distributed intragrating sensing using phase retrieval," in Proc. SPIE 3746, 588-591 (1999).

Smart Mater. Struct.

S. Huang, M. Ohn, M. LeBlanc, and R. M. Measures, "Continuous arbitrary strain profile measurements with fiber Bragg gratings," Smart Mater. Struct. 7, 248-256 (1998).
[CrossRef]

Other

M. K. Durkin, M. Ibsen, and R. I. Laming, "Equalisation of spectral non-uniformities in broad-band chirped fibre gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications andFundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 231-233.

R. Kashyap, A. Ellis, D. Malyon, H. G. Frochlich, A. Swanton, and D. J. Armes, "Eight wavelength×10 Gb/s simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth 1.3metre long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nanoseconds," in Proceedings of the European Conference on Optical Communication (ECOC, 1996), Vol. 5, pp. 5-10.

D. Garthe, H. N. Rourke, G. Milner, A. Fielding, and S. J. Clements, "System performance of practical broadband dispersion compensating gratings," in Optical Fiber Communication Conference, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1997), pp. 74-75.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

R. Kashap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Power reflectance spectra of the chirped FBG. A, measured from the blue end; B, measured from the red end.

Fig. 2
Fig. 2

Measured transmittance and excess loss of the chirped FBG. Excess loss X ( λ ) = T ( λ ) + R blue ( λ ) .

Fig. 3
Fig. 3

Calculation B and measurement B of reverse-direction spectrum.

Fig. 4
Fig. 4

Loss magnitude versus detuning from local Bragg wavelength.

Fig. 5
Fig. 5

Calculated power spectra using the modified TMM model. A, an apodized chirped grating as calculated with Eq. (14); B, modified spectrum of the grating as calculated with Eq. (14, 16).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

X ( λ ) = R blue ( λ ) + T ( λ ) .
R red ( λ ) = X 2 ( λ ) R blue ( λ ) .
δ = 2 π μ ¯ ( 1 λ 1 λ B ) .
κ = π λ δ μ ac .
σ ̂ = δ + 2 π λ δ μ dc .
γ = κ 2 σ ̂ 2 .
t = cosh ( γ Δ z ) i σ ̂ γ sinh ( γ Δ z ) .
ρ = i κ γ sinh ( γ Δ z ) .
d U d z = i σ ̂ U + i κ V ,
d V d z = i σ ̂ V i κ * U .
[ U ( z + Δ z ) V ( z + Δ z ) ] = M [ U ( z ) V ( z ) ] .
M = [ cosh ( γ Δ z ) + i ( σ ̂ γ ) sinh ( γ Δ z ) i ( κ γ ) sinh ( γ Δ z ) i ( κ γ ) sinh ( γ Δ z ) cosh ( γ Δ z ) i ( σ ̂ γ ) sinh ( γ Δ z ) ] .
G = n = 1 n = N M .
G = n = 0 n = N α n 1 ( λ ) M n .
X ( λ ) = T ( λ ) 1 R ( λ ) .
R B ( λ ) = R ( λ ) X 2 ( λ ) .

Metrics