Abstract

The reflectance spectra of chirped fiber Bragg gratings can depend substantially on the direction from which the measurement is taken. The measured difference between forward and backward reflectance spectra measured in a linearly chirped grating was shown to be due to the measured excess loss. Simulation using the popular transfer-matrix model demonstrated that the observed asymmetric behavior could be obtained only when excess loss has an asymmetric spectral shape about the local Bragg wavelengths. Application of cladding mode excess losses to the result of a transfer-matrix model accounted for the experimental observation.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transfer-matrix approach based on modal analysis for modeling corrugated long-period fiber gratings

Gia-Wei Chern, Lon A. Wang, and Chunn-Yenn Lin
Appl. Opt. 40(25) 4476-4486 (2001)

Accurate simulations of reflective wavelength spectrum of surface-bonded fiber Bragg grating

Chih-Chun Cheng, Yu-lung Lo, and Wen-Yuan Li
Appl. Opt. 49(17) 3394-3402 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription