J. M. Diazdelacruz, "Multiwindowed defocused electronic speckle photographic system for tilt measurement," Appl. Opt. 44, 2250-2257 (2005).

[CrossRef]
[PubMed]

B. M. Hennelly and J. T. Sheridan, "Fast numerical algorithms for the linear canonical transform," J. Opt. Soc. Am. A 22, 928-938 (2005).

[CrossRef]

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Magnitude and direction of motion with speckle correlation and the optical fractional Fourier transform," Appl. Opt. 44, 2720-2727 (2005).

[CrossRef]
[PubMed]

P. Gundu, E. Hack, and P. Rastogi, "Superspeckles: a new application of optical superresolution," Opt. Express 13, 6468-6475 (2005).

[CrossRef]
[PubMed]

T. Alieva, M. J. Bastiaans, and M. L. Calvo, "Fractional transforms in optical information processing," EURASIP J. Appl. Signal Process. 10, 1498-1519 (2005).

D. P. Kelly, R. F. Patten, B. M. Hennelly, Y. Liu, J. E. Ward, and J. T. Sheridan, "Linear canonical transforms, and speckle based metrology," in Recent Developments in Traceable Dimensional Measurements III, J. E. Decken and G.-S. Peng, eds., Proc. SPIE 5879, 223-234 (2005).

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Speckle correlation and the fractional Fourier transform," in Optical Information Systems II, B Javidi, ed., Proc. SPIE 5557, 255-266 (2004).

[CrossRef]

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).

[CrossRef]

S. C. Pei and J. J. Ding, "Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms," J. Opt. Soc. Am. A 20, 522-532 (2003).

[CrossRef]

J. T. Sheridan, B. M. Hennelly, and D. Kelly, "Motion detection, the Wigner distribution function, and the optical fractional Fourier transform," Opt. Lett. 28, 884-886 (2003).

[CrossRef]
[PubMed]

T. Fricke-Begemann, "Three-dimensional deformation field measurement with digital speckle correlation," Appl. Opt. 42, 6783-6796 (2003).

[CrossRef]
[PubMed]

L. Z. Cai and Y. Q. Wang, "Optical implementation of scale invariant fractional Fourier transform of continuously variable orders with a two-lens system," Opt. Laser Technol. 34, 249-252 (2002).

S. Abe and J. T. Sheridan, "Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation," Opt. Lett. 19, 1801-1803 (1994).

[CrossRef]
[PubMed]

D. Mendlovic, M. Ozaktas, and A. W. Lohmann, "Graded-index media, Wigner-distribution functions, and the fractional Fourier transform," Appl. Opt. 33, 6188-6193 (1994).

[CrossRef]
[PubMed]

S. Abe and J. T. Sheridan, "Generalization of the fractional Fourier transformation to an arbitrary linear loss-less transformation: an operator approach," J. Phys. A 27, 4179-4187 (1994).

[CrossRef]

D. Mendlovic and H. M. Ozatkas, "Fractional Fourier transformations and their optical implementations," J. Opt. Soc. Am. A 10, 1875-1881 (1993).

[CrossRef]

A. W. Lohmann, "Image rotation, Wigner rotation and the fractional Fourier transformation," J. Opt. Soc. Am. A 10, 2181-2186 (1993).

[CrossRef]

H. M. Ozatkas and D. Mendlovic, "Fractional Fourier transformations and their optical implementations," J. Opt. Soc. Am. A 10, 2522-2531 (1993).

[CrossRef]

H. Tiziani, "A study of the use of laser speckle to measure small tilts of optically rough surfaces accurately," Opt. Commun. 5, 271-274 (1972).

[CrossRef]

E. Wigner, "On the quantum correction for thermodynamic equilibrium," Phys. Rev. 40, 749-759 (1932).

[CrossRef]

T. Alieva, M. J. Bastiaans, and M. L. Calvo, "Fractional transforms in optical information processing," EURASIP J. Appl. Signal Process. 10, 1498-1519 (2005).

J. Widjaja, J. Uozumi, and T. Asakura, "Real-time evaluation of local displacement of objects by means of the Wigner distribution function," J. Opt. (Paris) 23, 13-18 (1992).

[CrossRef]

T. Alieva, M. J. Bastiaans, and M. L. Calvo, "Fractional transforms in optical information processing," EURASIP J. Appl. Signal Process. 10, 1498-1519 (2005).

M. J. Bastians, "Application of the Wigner distribution function in optics," in The Wigner Distribution--Theory and Applications in Signal Processing, W.Mecklenbrauker and F.Hlawatsch, eds. (Elsevier Science, 1997), Chap. 7.

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1965).

L. Z. Cai and Y. Q. Wang, "Optical implementation of scale invariant fractional Fourier transform of continuously variable orders with a two-lens system," Opt. Laser Technol. 34, 249-252 (2002).

T. Alieva, M. J. Bastiaans, and M. L. Calvo, "Fractional transforms in optical information processing," EURASIP J. Appl. Signal Process. 10, 1498-1519 (2005).

J. C. Dainty, "The statistics of speckle patterns," in Progress in Optics, Vol. XIV, E.Wolf, ed. (North-Holland, 1976).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

J. W. Goodman, Statistical Optics (Wiley, 1985).

J. W. Goodman, "Statistical properties of laser speckle patterns," in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975).

[CrossRef]

D. P. Kelly, J. E. Ward, U. Gopinathan, B. M. Hennelly, F. T. O'Neill, and J. T. Sheridan, "The generalized Yamaguchi correlation factor for quadratic phase speckle metrology systems with apertures," Opt. Lett. (to be published).

R. F. Patten, B. M. Hennelly, D. P. Kelly, F. T. O'Neill, Y. Liu, and J. T. Sheridan, "Speckle photography: mixed domain fractional Fourier motion detection," Opt. Lett. 31, 32-34 (2006).

[CrossRef]
[PubMed]

B. M. Hennelly and J. T. Sheridan, "Fast numerical algorithms for the linear canonical transform," J. Opt. Soc. Am. A 22, 928-938 (2005).

[CrossRef]

D. P. Kelly, R. F. Patten, B. M. Hennelly, Y. Liu, J. E. Ward, and J. T. Sheridan, "Linear canonical transforms, and speckle based metrology," in Recent Developments in Traceable Dimensional Measurements III, J. E. Decken and G.-S. Peng, eds., Proc. SPIE 5879, 223-234 (2005).

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Magnitude and direction of motion with speckle correlation and the optical fractional Fourier transform," Appl. Opt. 44, 2720-2727 (2005).

[CrossRef]
[PubMed]

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Speckle correlation and the fractional Fourier transform," in Optical Information Systems II, B Javidi, ed., Proc. SPIE 5557, 255-266 (2004).

[CrossRef]

J. T. Sheridan, B. M. Hennelly, and D. Kelly, "Motion detection, the Wigner distribution function, and the optical fractional Fourier transform," Opt. Lett. 28, 884-886 (2003).

[CrossRef]
[PubMed]

D. P. Kelly, J. E. Ward, U. Gopinathan, B. M. Hennelly, F. T. O'Neill, and J. T. Sheridan, "The generalized Yamaguchi correlation factor for quadratic phase speckle metrology systems with apertures," Opt. Lett. (to be published).

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, "Analytical and numerical analysis of linear optical systems," Opt. Eng. (to be published).

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, 1989).

R. F. Patten, B. M. Hennelly, D. P. Kelly, F. T. O'Neill, Y. Liu, and J. T. Sheridan, "Speckle photography: mixed domain fractional Fourier motion detection," Opt. Lett. 31, 32-34 (2006).

[CrossRef]
[PubMed]

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Magnitude and direction of motion with speckle correlation and the optical fractional Fourier transform," Appl. Opt. 44, 2720-2727 (2005).

[CrossRef]
[PubMed]

D. P. Kelly, R. F. Patten, B. M. Hennelly, Y. Liu, J. E. Ward, and J. T. Sheridan, "Linear canonical transforms, and speckle based metrology," in Recent Developments in Traceable Dimensional Measurements III, J. E. Decken and G.-S. Peng, eds., Proc. SPIE 5879, 223-234 (2005).

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Speckle correlation and the fractional Fourier transform," in Optical Information Systems II, B Javidi, ed., Proc. SPIE 5557, 255-266 (2004).

[CrossRef]

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, "Analytical and numerical analysis of linear optical systems," Opt. Eng. (to be published).

D. P. Kelly, J. E. Ward, U. Gopinathan, B. M. Hennelly, F. T. O'Neill, and J. T. Sheridan, "The generalized Yamaguchi correlation factor for quadratic phase speckle metrology systems with apertures," Opt. Lett. (to be published).

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).

[CrossRef]

M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

R. F. Patten, B. M. Hennelly, D. P. Kelly, F. T. O'Neill, Y. Liu, and J. T. Sheridan, "Speckle photography: mixed domain fractional Fourier motion detection," Opt. Lett. 31, 32-34 (2006).

[CrossRef]
[PubMed]

D. P. Kelly, R. F. Patten, B. M. Hennelly, Y. Liu, J. E. Ward, and J. T. Sheridan, "Linear canonical transforms, and speckle based metrology," in Recent Developments in Traceable Dimensional Measurements III, J. E. Decken and G.-S. Peng, eds., Proc. SPIE 5879, 223-234 (2005).

A. W. Lohmann, "A fake zoom lens for fractional Fourier experiments," Opt. Commun. 115, 427-443 (1995).

[CrossRef]

D. Mendlovic, M. Ozaktas, and A. W. Lohmann, "Graded-index media, Wigner-distribution functions, and the fractional Fourier transform," Appl. Opt. 33, 6188-6193 (1994).

[CrossRef]
[PubMed]

A. W. Lohmann, "Image rotation, Wigner rotation and the fractional Fourier transformation," J. Opt. Soc. Am. A 10, 2181-2186 (1993).

[CrossRef]

D. Mendlovic, M. Ozaktas, and A. W. Lohmann, "Graded-index media, Wigner-distribution functions, and the fractional Fourier transform," Appl. Opt. 33, 6188-6193 (1994).

[CrossRef]
[PubMed]

H. M. Ozatkas and D. Mendlovic, "Fractional Fourier transformations and their optical implementations," J. Opt. Soc. Am. A 10, 2522-2531 (1993).

[CrossRef]

D. Mendlovic and H. M. Ozatkas, "Fractional Fourier transformations and their optical implementations," J. Opt. Soc. Am. A 10, 1875-1881 (1993).

[CrossRef]

E. L. O'Neill, Introduction to Statistical Optics (Addison-Wesley, 1962).

R. F. Patten, B. M. Hennelly, D. P. Kelly, F. T. O'Neill, Y. Liu, and J. T. Sheridan, "Speckle photography: mixed domain fractional Fourier motion detection," Opt. Lett. 31, 32-34 (2006).

[CrossRef]
[PubMed]

D. P. Kelly, J. E. Ward, U. Gopinathan, B. M. Hennelly, F. T. O'Neill, and J. T. Sheridan, "The generalized Yamaguchi correlation factor for quadratic phase speckle metrology systems with apertures," Opt. Lett. (to be published).

D. Mendlovic, M. Ozaktas, and A. W. Lohmann, "Graded-index media, Wigner-distribution functions, and the fractional Fourier transform," Appl. Opt. 33, 6188-6193 (1994).

[CrossRef]
[PubMed]

M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

R. F. Patten, B. M. Hennelly, D. P. Kelly, F. T. O'Neill, Y. Liu, and J. T. Sheridan, "Speckle photography: mixed domain fractional Fourier motion detection," Opt. Lett. 31, 32-34 (2006).

[CrossRef]
[PubMed]

D. P. Kelly, R. F. Patten, B. M. Hennelly, Y. Liu, J. E. Ward, and J. T. Sheridan, "Linear canonical transforms, and speckle based metrology," in Recent Developments in Traceable Dimensional Measurements III, J. E. Decken and G.-S. Peng, eds., Proc. SPIE 5879, 223-234 (2005).

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).

P. K. Rastogi, "Techniques of displacement and deformation measurements in speckle metrology," in Speckle Metrology, R.S.Sirohi, ed. (Marcel Dekker, 1993).

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, "Analytical and numerical analysis of linear optical systems," Opt. Eng. (to be published).

R. F. Patten, B. M. Hennelly, D. P. Kelly, F. T. O'Neill, Y. Liu, and J. T. Sheridan, "Speckle photography: mixed domain fractional Fourier motion detection," Opt. Lett. 31, 32-34 (2006).

[CrossRef]
[PubMed]

B. M. Hennelly and J. T. Sheridan, "Fast numerical algorithms for the linear canonical transform," J. Opt. Soc. Am. A 22, 928-938 (2005).

[CrossRef]

D. P. Kelly, R. F. Patten, B. M. Hennelly, Y. Liu, J. E. Ward, and J. T. Sheridan, "Linear canonical transforms, and speckle based metrology," in Recent Developments in Traceable Dimensional Measurements III, J. E. Decken and G.-S. Peng, eds., Proc. SPIE 5879, 223-234 (2005).

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Magnitude and direction of motion with speckle correlation and the optical fractional Fourier transform," Appl. Opt. 44, 2720-2727 (2005).

[CrossRef]
[PubMed]

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Speckle correlation and the fractional Fourier transform," in Optical Information Systems II, B Javidi, ed., Proc. SPIE 5557, 255-266 (2004).

[CrossRef]

J. T. Sheridan, B. M. Hennelly, and D. Kelly, "Motion detection, the Wigner distribution function, and the optical fractional Fourier transform," Opt. Lett. 28, 884-886 (2003).

[CrossRef]
[PubMed]

J. T. Sheridan and R. Patten, "Holographic interferometry and the fractional Fourier transformation," Opt. Lett. 25, 448-450 (2000).

[CrossRef]

J. T. Sheridan and R. Patten, "Fractional Fourier speckle photography: motion detection and the optical fractional Fourier transformation," Optik (Stuttgart) 111, 329-331 (2000).

S. Abe and J. T. Sheridan, "Generalization of the fractional Fourier transformation to an arbitrary linear loss-less transformation: an operator approach," J. Phys. A 27, 4179-4187 (1994).

[CrossRef]

S. Abe and J. T. Sheridan, "Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation," Opt. Lett. 19, 1801-1803 (1994).

[CrossRef]
[PubMed]

D. P. Kelly, J. E. Ward, U. Gopinathan, B. M. Hennelly, F. T. O'Neill, and J. T. Sheridan, "The generalized Yamaguchi correlation factor for quadratic phase speckle metrology systems with apertures," Opt. Lett. (to be published).

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, "Analytical and numerical analysis of linear optical systems," Opt. Eng. (to be published).

H. Tiziani, "A study of the use of laser speckle to measure small tilts of optically rough surfaces accurately," Opt. Commun. 5, 271-274 (1972).

[CrossRef]

J. Widjaja, J. Uozumi, and T. Asakura, "Real-time evaluation of local displacement of objects by means of the Wigner distribution function," J. Opt. (Paris) 23, 13-18 (1992).

[CrossRef]

L. Z. Cai and Y. Q. Wang, "Optical implementation of scale invariant fractional Fourier transform of continuously variable orders with a two-lens system," Opt. Laser Technol. 34, 249-252 (2002).

D. P. Kelly, R. F. Patten, B. M. Hennelly, Y. Liu, J. E. Ward, and J. T. Sheridan, "Linear canonical transforms, and speckle based metrology," in Recent Developments in Traceable Dimensional Measurements III, J. E. Decken and G.-S. Peng, eds., Proc. SPIE 5879, 223-234 (2005).

D. P. Kelly, J. E. Ward, U. Gopinathan, B. M. Hennelly, F. T. O'Neill, and J. T. Sheridan, "The generalized Yamaguchi correlation factor for quadratic phase speckle metrology systems with apertures," Opt. Lett. (to be published).

J. Widjaja, J. Uozumi, and T. Asakura, "Real-time evaluation of local displacement of objects by means of the Wigner distribution function," J. Opt. (Paris) 23, 13-18 (1992).

[CrossRef]

E. Wigner, "On the quantum correction for thermodynamic equilibrium," Phys. Rev. 40, 749-759 (1932).

[CrossRef]

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, 1989).

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).

[CrossRef]

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).

[CrossRef]

M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

Q. Li and F. Chiang, "Three-dimensional dimension of laser speckle," Appl. Opt. 31, 6287-6291 (1992).

[CrossRef]
[PubMed]

D. Mendlovic, M. Ozaktas, and A. W. Lohmann, "Graded-index media, Wigner-distribution functions, and the fractional Fourier transform," Appl. Opt. 33, 6188-6193 (1994).

[CrossRef]
[PubMed]

R. G. Dorsch, "Fractional Fourier transform of variable order based on a modular lens system," Appl. Opt. 34, 6016-6020 (1995).

[CrossRef]
[PubMed]

M. Sjodahl, "Electronic speckle photography: measurement of in-plane strain fields through the use of defocused laser speckle," Appl. Opt. 34, 5799-5808 (1995).

[CrossRef]
[PubMed]

T. Fricke-Begemann, "Speckle interferometry: three-dimensional deformation field measurement with a single interferogram," Appl. Opt. 40, 5011-5022 (2001).

[CrossRef]

T. Fricke-Begemann, "Three-dimensional deformation field measurement with digital speckle correlation," Appl. Opt. 42, 6783-6796 (2003).

[CrossRef]
[PubMed]

J. M. Diazdelacruz, "Multiwindowed defocused electronic speckle photographic system for tilt measurement," Appl. Opt. 44, 2250-2257 (2005).

[CrossRef]
[PubMed]

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Magnitude and direction of motion with speckle correlation and the optical fractional Fourier transform," Appl. Opt. 44, 2720-2727 (2005).

[CrossRef]
[PubMed]

T. Alieva, M. J. Bastiaans, and M. L. Calvo, "Fractional transforms in optical information processing," EURASIP J. Appl. Signal Process. 10, 1498-1519 (2005).

J. Widjaja, J. Uozumi, and T. Asakura, "Real-time evaluation of local displacement of objects by means of the Wigner distribution function," J. Opt. (Paris) 23, 13-18 (1992).

[CrossRef]

H. T. Yura, B. Rose, and S. G. Hanson, "Dynamic laser speckle in complex ABCD optical systems," J. Opt. Soc. Am. A 15, 1160-1166 (1998).

[CrossRef]

H. T. Yura and S. G. Hanson, "Optical beam propagation through complex optical systems," J. Opt. Soc. Am. A 4, 1931-1948 (1987).

[CrossRef]

L. Leushacke and M. Kirchner, "Three-dimensional correlation coefficient of speckle intensity for rectangular and circular apertures," J. Opt. Soc. Am. A 7, 827-832 (1990).

[CrossRef]

M. Owner-Petersen, "Decorrelation and fringe visibility: on the limiting behavior of various electronic speckle-pattern interferometers," J. Opt. Soc. Am. A 8, 1082-1089 (1991).

[CrossRef]

D. Mendlovic and H. M. Ozatkas, "Fractional Fourier transformations and their optical implementations," J. Opt. Soc. Am. A 10, 1875-1881 (1993).

[CrossRef]

A. W. Lohmann, "Image rotation, Wigner rotation and the fractional Fourier transformation," J. Opt. Soc. Am. A 10, 2181-2186 (1993).

[CrossRef]

H. M. Ozatkas and D. Mendlovic, "Fractional Fourier transformations and their optical implementations," J. Opt. Soc. Am. A 10, 2522-2531 (1993).

[CrossRef]

B. M. Hennelly and J. T. Sheridan, "Fast numerical algorithms for the linear canonical transform," J. Opt. Soc. Am. A 22, 928-938 (2005).

[CrossRef]

S. C. Pei and J. J. Ding, "Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms," J. Opt. Soc. Am. A 20, 522-532 (2003).

[CrossRef]

S. Abe and J. T. Sheridan, "Generalization of the fractional Fourier transformation to an arbitrary linear loss-less transformation: an operator approach," J. Phys. A 27, 4179-4187 (1994).

[CrossRef]

A. W. Lohmann, "A fake zoom lens for fractional Fourier experiments," Opt. Commun. 115, 427-443 (1995).

[CrossRef]

H. Tiziani, "A study of the use of laser speckle to measure small tilts of optically rough surfaces accurately," Opt. Commun. 5, 271-274 (1972).

[CrossRef]

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).

[CrossRef]

D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, "Analytical and numerical analysis of linear optical systems," Opt. Eng. (to be published).

L. Z. Cai and Y. Q. Wang, "Optical implementation of scale invariant fractional Fourier transform of continuously variable orders with a two-lens system," Opt. Laser Technol. 34, 249-252 (2002).

S. Abe and J. T. Sheridan, "Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation," Opt. Lett. 19, 1801-1803 (1994).

[CrossRef]
[PubMed]

R. F. Patten, B. M. Hennelly, D. P. Kelly, F. T. O'Neill, Y. Liu, and J. T. Sheridan, "Speckle photography: mixed domain fractional Fourier motion detection," Opt. Lett. 31, 32-34 (2006).

[CrossRef]
[PubMed]

J. T. Sheridan and R. Patten, "Holographic interferometry and the fractional Fourier transformation," Opt. Lett. 25, 448-450 (2000).

[CrossRef]

J. T. Sheridan, B. M. Hennelly, and D. Kelly, "Motion detection, the Wigner distribution function, and the optical fractional Fourier transform," Opt. Lett. 28, 884-886 (2003).

[CrossRef]
[PubMed]

J. T. Sheridan and R. Patten, "Fractional Fourier speckle photography: motion detection and the optical fractional Fourier transformation," Optik (Stuttgart) 111, 329-331 (2000).

E. Wigner, "On the quantum correction for thermodynamic equilibrium," Phys. Rev. 40, 749-759 (1932).

[CrossRef]

D. P. Kelly, B. M. Hennelly, and J. T. Sheridan, "Speckle correlation and the fractional Fourier transform," in Optical Information Systems II, B Javidi, ed., Proc. SPIE 5557, 255-266 (2004).

[CrossRef]

D. P. Kelly, R. F. Patten, B. M. Hennelly, Y. Liu, J. E. Ward, and J. T. Sheridan, "Linear canonical transforms, and speckle based metrology," in Recent Developments in Traceable Dimensional Measurements III, J. E. Decken and G.-S. Peng, eds., Proc. SPIE 5879, 223-234 (2005).

M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).

P. K. Rastogi, "Techniques of displacement and deformation measurements in speckle metrology," in Speckle Metrology, R.S.Sirohi, ed. (Marcel Dekker, 1993).

J. W. Goodman, "Statistical properties of laser speckle patterns," in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975).

[CrossRef]

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, 1989).

J. C. Dainty, "The statistics of speckle patterns," in Progress in Optics, Vol. XIV, E.Wolf, ed. (North-Holland, 1976).

T. Fricke-Begemann, "Optical measurement of deformation fields and surface processes with digital speckle correlation," Ph.D. dissertation (Carl von Ossietzky Universität Oldenburg, 2002).

M. J. Bastians, "Application of the Wigner distribution function in optics," in The Wigner Distribution--Theory and Applications in Signal Processing, W.Mecklenbrauker and F.Hlawatsch, eds. (Elsevier Science, 1997), Chap. 7.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1965).

J. W. Goodman, Statistical Optics (Wiley, 1985).

E. L. O'Neill, Introduction to Statistical Optics (Addison-Wesley, 1962).

D. P. Kelly, J. E. Ward, U. Gopinathan, B. M. Hennelly, F. T. O'Neill, and J. T. Sheridan, "The generalized Yamaguchi correlation factor for quadratic phase speckle metrology systems with apertures," Opt. Lett. (to be published).

www.ni.com/third-party/sony/pdf/XC-ES50ES30.pdf.

MATLAB toolbox documentation, www.mathworks.com.