A. Litman, "Reconstruction by level sets of n-ary scattering obstacles," Inverse Probl. 21, S131-S152 (2005).

[CrossRef]

M. Masmoudi, J. Pommier, and B. Samet, "The topological asymptotic expansion for the Maxwell equations and some applications," Inverse Probl. 21, 547-564 (2005).

[CrossRef]

V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).

[CrossRef]
[PubMed]

N. Destouches, C. A. Guérin, M. Lequime, and H. Giovannini, "Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles," Opt. Commun. 198, 233-239 (2001).

[CrossRef]

M. Lambert and D. Lesselier, "Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields," Inverse Probl. 16, 563-576 (2000).

[CrossRef]

A. Litman, D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Probl. 14, 685-706 (1998).

[CrossRef]

T. Takenaka, J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett. 14, 182-188 (1997).

[CrossRef]

F. James and M. Sepulveda, "Parameter identification for a model of chromatographic column," Inverse Probl. 10, 1299-1314 (1994).

[CrossRef]

Z. Q. Peng and A. G. Tijhuis, "Transient scattering by a lossy dielectric cylinder: marching-on-in frequency approach," J. Electromagn. Waves Appl. 7, 739-763 (1993).

[CrossRef]

S. Osher and J. A. Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations," J. Comput. Phys. 79, 12-49 (1988).

[CrossRef]

A. G. Tijhuis, "Angularly propagating waves in a radially inhomogeneous, lossy dielectric cylinder and their connection with natural modes," IEEE Trans. Antennas Propag. 34, 813-824 (1986).

[CrossRef]

N. Destouches, C. A. Guérin, M. Lequime, and H. Giovannini, "Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles," Opt. Commun. 198, 233-239 (2001).

[CrossRef]

G. Gbur and E. Wolf, "The information content of the scattered intensity in diffraction tomography," Inf. Sci. (N.Y.) 162, 3-20 (2004).

N. Destouches, C. A. Guérin, M. Lequime, and H. Giovannini, "Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles," Opt. Commun. 198, 233-239 (2001).

[CrossRef]

N. Destouches, C. A. Guérin, M. Lequime, and H. Giovannini, "Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles," Opt. Commun. 198, 233-239 (2001).

[CrossRef]

T. Takenaka, J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett. 14, 182-188 (1997).

[CrossRef]

F. James and M. Sepulveda, "Parameter identification for a model of chromatographic column," Inverse Probl. 10, 1299-1314 (1994).

[CrossRef]

M. Lambert and D. Lesselier, "Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields," Inverse Probl. 16, 563-576 (2000).

[CrossRef]

V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).

[CrossRef]
[PubMed]

N. Destouches, C. A. Guérin, M. Lequime, and H. Giovannini, "Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles," Opt. Commun. 198, 233-239 (2001).

[CrossRef]

M. Lambert and D. Lesselier, "Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields," Inverse Probl. 16, 563-576 (2000).

[CrossRef]

A. Litman, D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Probl. 14, 685-706 (1998).

[CrossRef]

A. Litman, "Reconstruction by level sets of n-ary scattering obstacles," Inverse Probl. 21, S131-S152 (2005).

[CrossRef]

A. Litman, D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Probl. 14, 685-706 (1998).

[CrossRef]

M. Masmoudi, J. Pommier, and B. Samet, "The topological asymptotic expansion for the Maxwell equations and some applications," Inverse Probl. 21, 547-564 (2005).

[CrossRef]

S. Osher and J. A. Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations," J. Comput. Phys. 79, 12-49 (1988).

[CrossRef]

Z. Q. Peng and A. G. Tijhuis, "Transient scattering by a lossy dielectric cylinder: marching-on-in frequency approach," J. Electromagn. Waves Appl. 7, 739-763 (1993).

[CrossRef]

M. Masmoudi, J. Pommier, and B. Samet, "The topological asymptotic expansion for the Maxwell equations and some applications," Inverse Probl. 21, 547-564 (2005).

[CrossRef]

M. Masmoudi, J. Pommier, and B. Samet, "The topological asymptotic expansion for the Maxwell equations and some applications," Inverse Probl. 21, 547-564 (2005).

[CrossRef]

B. Samet, "L'analyse asymtotique topologique pour les équations de Maxwell et applications," Ph.D. thesis (Université Paul Sabatier, 2004).

A. Litman, D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Probl. 14, 685-706 (1998).

[CrossRef]

F. James and M. Sepulveda, "Parameter identification for a model of chromatographic column," Inverse Probl. 10, 1299-1314 (1994).

[CrossRef]

S. Osher and J. A. Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations," J. Comput. Phys. 79, 12-49 (1988).

[CrossRef]

J. Sokolowski and A. Zochowski, On Topological Derivative in Shape Optimization, Tech. Rep. RR-3170 (Institut National de Recherche en Informatique et Automatique, 1997).

T. Takenaka, J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett. 14, 182-188 (1997).

[CrossRef]

T. Takenaka, J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett. 14, 182-188 (1997).

[CrossRef]

Z. Q. Peng and A. G. Tijhuis, "Transient scattering by a lossy dielectric cylinder: marching-on-in frequency approach," J. Electromagn. Waves Appl. 7, 739-763 (1993).

[CrossRef]

A. G. Tijhuis, "Angularly propagating waves in a radially inhomogeneous, lossy dielectric cylinder and their connection with natural modes," IEEE Trans. Antennas Propag. 34, 813-824 (1986).

[CrossRef]

T. Takenaka, J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett. 14, 182-188 (1997).

[CrossRef]

G. Gbur and E. Wolf, "The information content of the scattered intensity in diffraction tomography," Inf. Sci. (N.Y.) 162, 3-20 (2004).

J. Sokolowski and A. Zochowski, On Topological Derivative in Shape Optimization, Tech. Rep. RR-3170 (Institut National de Recherche en Informatique et Automatique, 1997).

A. G. Tijhuis, "Angularly propagating waves in a radially inhomogeneous, lossy dielectric cylinder and their connection with natural modes," IEEE Trans. Antennas Propag. 34, 813-824 (1986).

[CrossRef]

G. Gbur and E. Wolf, "The information content of the scattered intensity in diffraction tomography," Inf. Sci. (N.Y.) 162, 3-20 (2004).

M. Lambert and D. Lesselier, "Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields," Inverse Probl. 16, 563-576 (2000).

[CrossRef]

F. James and M. Sepulveda, "Parameter identification for a model of chromatographic column," Inverse Probl. 10, 1299-1314 (1994).

[CrossRef]

A. Litman, D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Probl. 14, 685-706 (1998).

[CrossRef]

M. Masmoudi, J. Pommier, and B. Samet, "The topological asymptotic expansion for the Maxwell equations and some applications," Inverse Probl. 21, 547-564 (2005).

[CrossRef]

A. Litman, "Reconstruction by level sets of n-ary scattering obstacles," Inverse Probl. 21, S131-S152 (2005).

[CrossRef]

S. Osher and J. A. Sethian, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations," J. Comput. Phys. 79, 12-49 (1988).

[CrossRef]

Z. Q. Peng and A. G. Tijhuis, "Transient scattering by a lossy dielectric cylinder: marching-on-in frequency approach," J. Electromagn. Waves Appl. 7, 739-763 (1993).

[CrossRef]

V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).

[CrossRef]
[PubMed]

L. Crocco, M. D'Urso, and T. Isernia, "Inverse scattering from phaseless measurements of the total field on a closed curve," J. Opt. Soc. Am. A 21, 622-631 (2004).

[CrossRef]

K. Belkebir, P. C. Chaumet, and A. Sentenac, "Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography," J. Opt. Soc. Am. A 23, 586-595 (2006).

[CrossRef]

T. Takenaka, J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett. 14, 182-188 (1997).

[CrossRef]

N. Destouches, C. A. Guérin, M. Lequime, and H. Giovannini, "Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles," Opt. Commun. 198, 233-239 (2001).

[CrossRef]

B. Samet, "L'analyse asymtotique topologique pour les équations de Maxwell et applications," Ph.D. thesis (Université Paul Sabatier, 2004).

J. Sokolowski and A. Zochowski, On Topological Derivative in Shape Optimization, Tech. Rep. RR-3170 (Institut National de Recherche en Informatique et Automatique, 1997).