Abstract

We propose a mathematical model to derive the chromatic parameters from increment spectral sensitivity functions. This model was applied to determine the effective red, green, blue, and yellow mechanism contribution to the detection of the spectral stimuli of five normal trichromatic subjects. Detection thresholds were measured for a 300ms, 1.2° circular test flash presented on a 100cdm2 white background for spectral wavelengths between 410 and 660nm. The model analysis confirmed that in the red–green wavelength area, the detection of our chosen stimuli was mediated by two distinct (L–M) antagonistic mechanisms: a red–green and a yellow, from the blue–yellow system. We inferred that the red–green mechanism receptive fields consisted of a single L- or M-cone center with a homogeneous or heterogeneous surround devoid of S-cone projections. For the receptive fields of the yellow half of the blue–yellow mechanism, we propose a similar configuration but with S-cone projections present in the surround. This proposal is not concordant with what is currently understood regarding retinal physiology. However, two L–M antagonistic mechanisms in the red–green wavelengths as proposed by our results predict what would appear as an intuitive yellow mechanism with a maximal sensitivity at the 578nm wavelength, where the red–green mechanism sensitivity is null.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Hurvich and D. Jameson, "An opponent-process theory of color vision," Psychol. Rev. 64, 384-404 (1957).
    [CrossRef] [PubMed]
  2. P. E. King-Smith and D. Carden, "Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration," J. Opt. Soc. Am. 66, 709-717 (1976).
    [CrossRef] [PubMed]
  3. J. Pokorny and V. C. Smith, "Spectral-luminosity functions, scalar linearity, and chromatic adaptation," J. Opt. Soc. Am. A 10, 1304-1313 (1993).
    [CrossRef] [PubMed]
  4. H. G. Sperling and R. S. Harwerth, "Red-green cone interactions in the increment-threshold spectral sensitivity of primate," Science 9, 180-184 (1971).
    [CrossRef]
  5. M. Kalloniatis and R. S. Harwerth, "Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation," J. Opt. Soc. Am. A 7, 1912-1928 (1990).
    [CrossRef] [PubMed]
  6. E. Miyahara, J. Pokorny, and V. C. Smith, "Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers," Vision Res. 36, 1597-1613 (1996).
    [CrossRef] [PubMed]
  7. T. G. Wheeler and K. I. Naka, "The modes of chromatic interactions in the retina," Vision Res. 17, 1015-1018 (1977).
    [CrossRef] [PubMed]
  8. D. M. Dacey and B. B. Lee, "The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion cell type," Nature 24, 731-735 (1994).
    [CrossRef]
  9. K. T. Mullen and M. J. Sankeralli, "Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space," J. Opt. Soc. Am. A 14, 2633-2646 (1997).
    [CrossRef]
  10. S. L. Guth and H. R. Lodge, "Heterochromatic additivity, foveal spectral sensitivity and a new color model," J. Opt. Soc. Am. 63, 450-462 (1973).
    [CrossRef] [PubMed]
  11. S. L. Guth, R. W. Massof, and T. Benzschawel, "Vector model for normal and dichromatic color vision," J. Opt. Soc. Am. 70, 197-212 (1980).
    [CrossRef] [PubMed]
  12. R. F. Quick, "A vector-magnitude model of contrast detection," Kybernetik 16, 65-67 (1974).
    [CrossRef] [PubMed]
  13. L. Kerr, "Detection and identification of monochromatic stimuli under chromatic contrast," Vision Res. 14, 1095-1105 (1974).
    [CrossRef] [PubMed]
  14. V. C. Smith and J. Pokorny, "Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm," Vision Res. 15, 161-171 (1975).
    [CrossRef] [PubMed]
  15. D. L. MacAdam, "Color discrimination and the influence of color contrast on acuity," Doc. Ophthalmol. 3, 214-233 (1949).
    [CrossRef] [PubMed]
  16. K. Kranda and P. E. King-Smith, "Detection of colored stimuli by independent linear systems," Vision Res. 19, 733-745 (1979).
    [CrossRef] [PubMed]
  17. C. Noorlander, M. J. G. Heuts, and J. J. Koenderink, "Influence of the target size on the detection threshold for luminance and chromaticity contrast," J. Opt. Soc. Am. 70, 1116-1121 (1980).
    [CrossRef] [PubMed]
  18. V. C. Smith, R. W. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
    [CrossRef] [PubMed]
  19. D. T. Lindsey, J. Pokorny, and V. C. Smith, "Phase-dependent sensitivity to heterochromatic flicker," J. Opt. Soc. Am. A 3, 921-927 (1986).
    [CrossRef] [PubMed]
  20. W. Paulus and A. Kröger-Paulus, "A new concept of retinal color coding," Vision Res. 23, 529-540 (1983).
    [CrossRef] [PubMed]
  21. J. Larimer, "Opponent process additivity--I. red/green equilibria," Vision Res. 14, 1127-1140 (1974).
    [CrossRef] [PubMed]
  22. C. F. Stromeyer, R. E. Kronauer, and G. R. Cole, "Adaptive mechanisms controlling sensitivity to red-green chromatic flashes," in Colour Vision, L.D.Mollon and L.T.Sharpe, eds. (Academic, 1983), pp. 313-330.
  23. C. F. Stromeyer, G. R. Cole, and R. E. Kronauer, "Second-site adaptation in red-green chromatic pathway," Vision Res. 25, 219-237 (1985).
    [CrossRef] [PubMed]
  24. F. M. De Monasterio, P. Gouras, and D. J. Tolhurst, "Trichromatic colour opponency in ganglion cells of the rhesus monkey retina," J. Physiol. (London) 251, 197-216 (1975).
  25. C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998).
    [CrossRef] [PubMed]
  26. P. G. Polden and J. D. Mollon, "Reversed effect of adapting stimuli on visual sensitivity," Proc. R. Soc. London, Ser. B 19, 235-272 (1980).
    [CrossRef]
  27. J. Wisowaty, "An action spectrum for the production of transient tritanopia," Vision Res. 23, 769-774 (1983).
    [CrossRef] [PubMed]
  28. J. S. McLellan and R. T. Eskew, Jr., "ON and OFF S-cone pathways have different long-wave cone inputs," Vision Res. 40, 2449-2465 (2000).
    [CrossRef] [PubMed]
  29. J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space," Vision Res. 22, 1123-1131 (1982).
    [CrossRef] [PubMed]
  30. R. M. Boynton, W. Schafer, and M. E. Neun, "Hue-wavelength relation measured by color-naming method for three retinal locations," Science 146, 666-668 (1964).
    [CrossRef] [PubMed]

2000 (1)

J. S. McLellan and R. T. Eskew, Jr., "ON and OFF S-cone pathways have different long-wave cone inputs," Vision Res. 40, 2449-2465 (2000).
[CrossRef] [PubMed]

1998 (1)

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

E. Miyahara, J. Pokorny, and V. C. Smith, "Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers," Vision Res. 36, 1597-1613 (1996).
[CrossRef] [PubMed]

1994 (1)

D. M. Dacey and B. B. Lee, "The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion cell type," Nature 24, 731-735 (1994).
[CrossRef]

1993 (1)

1990 (1)

1986 (1)

1985 (1)

C. F. Stromeyer, G. R. Cole, and R. E. Kronauer, "Second-site adaptation in red-green chromatic pathway," Vision Res. 25, 219-237 (1985).
[CrossRef] [PubMed]

1984 (1)

V. C. Smith, R. W. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

1983 (2)

J. Wisowaty, "An action spectrum for the production of transient tritanopia," Vision Res. 23, 769-774 (1983).
[CrossRef] [PubMed]

W. Paulus and A. Kröger-Paulus, "A new concept of retinal color coding," Vision Res. 23, 529-540 (1983).
[CrossRef] [PubMed]

1982 (1)

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space," Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

1980 (3)

1979 (1)

K. Kranda and P. E. King-Smith, "Detection of colored stimuli by independent linear systems," Vision Res. 19, 733-745 (1979).
[CrossRef] [PubMed]

1977 (1)

T. G. Wheeler and K. I. Naka, "The modes of chromatic interactions in the retina," Vision Res. 17, 1015-1018 (1977).
[CrossRef] [PubMed]

1976 (1)

1975 (2)

V. C. Smith and J. Pokorny, "Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm," Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

F. M. De Monasterio, P. Gouras, and D. J. Tolhurst, "Trichromatic colour opponency in ganglion cells of the rhesus monkey retina," J. Physiol. (London) 251, 197-216 (1975).

1974 (3)

J. Larimer, "Opponent process additivity--I. red/green equilibria," Vision Res. 14, 1127-1140 (1974).
[CrossRef] [PubMed]

R. F. Quick, "A vector-magnitude model of contrast detection," Kybernetik 16, 65-67 (1974).
[CrossRef] [PubMed]

L. Kerr, "Detection and identification of monochromatic stimuli under chromatic contrast," Vision Res. 14, 1095-1105 (1974).
[CrossRef] [PubMed]

1973 (1)

1971 (1)

H. G. Sperling and R. S. Harwerth, "Red-green cone interactions in the increment-threshold spectral sensitivity of primate," Science 9, 180-184 (1971).
[CrossRef]

1964 (1)

R. M. Boynton, W. Schafer, and M. E. Neun, "Hue-wavelength relation measured by color-naming method for three retinal locations," Science 146, 666-668 (1964).
[CrossRef] [PubMed]

1957 (1)

L. M. Hurvich and D. Jameson, "An opponent-process theory of color vision," Psychol. Rev. 64, 384-404 (1957).
[CrossRef] [PubMed]

1949 (1)

D. L. MacAdam, "Color discrimination and the influence of color contrast on acuity," Doc. Ophthalmol. 3, 214-233 (1949).
[CrossRef] [PubMed]

Benzschawel, T.

Bowen, R. W.

V. C. Smith, R. W. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

Boynton, R. M.

R. M. Boynton, W. Schafer, and M. E. Neun, "Hue-wavelength relation measured by color-naming method for three retinal locations," Science 146, 666-668 (1964).
[CrossRef] [PubMed]

Carden, D.

Chaparro, A.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998).
[CrossRef] [PubMed]

Chen, D.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998).
[CrossRef] [PubMed]

Cole, G. R.

C. F. Stromeyer, G. R. Cole, and R. E. Kronauer, "Second-site adaptation in red-green chromatic pathway," Vision Res. 25, 219-237 (1985).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, and G. R. Cole, "Adaptive mechanisms controlling sensitivity to red-green chromatic flashes," in Colour Vision, L.D.Mollon and L.T.Sharpe, eds. (Academic, 1983), pp. 313-330.

Dacey, D. M.

D. M. Dacey and B. B. Lee, "The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion cell type," Nature 24, 731-735 (1994).
[CrossRef]

De Monasterio, F. M.

F. M. De Monasterio, P. Gouras, and D. J. Tolhurst, "Trichromatic colour opponency in ganglion cells of the rhesus monkey retina," J. Physiol. (London) 251, 197-216 (1975).

Eskew, R. T.

J. S. McLellan and R. T. Eskew, Jr., "ON and OFF S-cone pathways have different long-wave cone inputs," Vision Res. 40, 2449-2465 (2000).
[CrossRef] [PubMed]

Gouras, P.

F. M. De Monasterio, P. Gouras, and D. J. Tolhurst, "Trichromatic colour opponency in ganglion cells of the rhesus monkey retina," J. Physiol. (London) 251, 197-216 (1975).

Guth, S. L.

Harwerth, R. S.

M. Kalloniatis and R. S. Harwerth, "Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation," J. Opt. Soc. Am. A 7, 1912-1928 (1990).
[CrossRef] [PubMed]

H. G. Sperling and R. S. Harwerth, "Red-green cone interactions in the increment-threshold spectral sensitivity of primate," Science 9, 180-184 (1971).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space," Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

Heuts, M. J. G.

Hu, E.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998).
[CrossRef] [PubMed]

Hurvich, L. M.

L. M. Hurvich and D. Jameson, "An opponent-process theory of color vision," Psychol. Rev. 64, 384-404 (1957).
[CrossRef] [PubMed]

Jameson, D.

L. M. Hurvich and D. Jameson, "An opponent-process theory of color vision," Psychol. Rev. 64, 384-404 (1957).
[CrossRef] [PubMed]

Kalloniatis, M.

Kerr, L.

L. Kerr, "Detection and identification of monochromatic stimuli under chromatic contrast," Vision Res. 14, 1095-1105 (1974).
[CrossRef] [PubMed]

King-Smith, P. E.

Koenderink, J. J.

Kranda, K.

K. Kranda and P. E. King-Smith, "Detection of colored stimuli by independent linear systems," Vision Res. 19, 733-745 (1979).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space," Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

Kröger-Paulus, A.

W. Paulus and A. Kröger-Paulus, "A new concept of retinal color coding," Vision Res. 23, 529-540 (1983).
[CrossRef] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, and R. E. Kronauer, "Second-site adaptation in red-green chromatic pathway," Vision Res. 25, 219-237 (1985).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, and G. R. Cole, "Adaptive mechanisms controlling sensitivity to red-green chromatic flashes," in Colour Vision, L.D.Mollon and L.T.Sharpe, eds. (Academic, 1983), pp. 313-330.

Larimer, J.

J. Larimer, "Opponent process additivity--I. red/green equilibria," Vision Res. 14, 1127-1140 (1974).
[CrossRef] [PubMed]

Lee, B. B.

D. M. Dacey and B. B. Lee, "The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion cell type," Nature 24, 731-735 (1994).
[CrossRef]

Lindsey, D. T.

Lodge, H. R.

MacAdam, D. L.

D. L. MacAdam, "Color discrimination and the influence of color contrast on acuity," Doc. Ophthalmol. 3, 214-233 (1949).
[CrossRef] [PubMed]

Massof, R. W.

McLellan, J. S.

J. S. McLellan and R. T. Eskew, Jr., "ON and OFF S-cone pathways have different long-wave cone inputs," Vision Res. 40, 2449-2465 (2000).
[CrossRef] [PubMed]

Miyahara, E.

E. Miyahara, J. Pokorny, and V. C. Smith, "Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers," Vision Res. 36, 1597-1613 (1996).
[CrossRef] [PubMed]

Mollon, J. D.

P. G. Polden and J. D. Mollon, "Reversed effect of adapting stimuli on visual sensitivity," Proc. R. Soc. London, Ser. B 19, 235-272 (1980).
[CrossRef]

Mullen, K. T.

Naka, K. I.

T. G. Wheeler and K. I. Naka, "The modes of chromatic interactions in the retina," Vision Res. 17, 1015-1018 (1977).
[CrossRef] [PubMed]

Neun, M. E.

R. M. Boynton, W. Schafer, and M. E. Neun, "Hue-wavelength relation measured by color-naming method for three retinal locations," Science 146, 666-668 (1964).
[CrossRef] [PubMed]

Noorlander, C.

Paulus, W.

W. Paulus and A. Kröger-Paulus, "A new concept of retinal color coding," Vision Res. 23, 529-540 (1983).
[CrossRef] [PubMed]

Pokorny, J.

E. Miyahara, J. Pokorny, and V. C. Smith, "Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers," Vision Res. 36, 1597-1613 (1996).
[CrossRef] [PubMed]

J. Pokorny and V. C. Smith, "Spectral-luminosity functions, scalar linearity, and chromatic adaptation," J. Opt. Soc. Am. A 10, 1304-1313 (1993).
[CrossRef] [PubMed]

D. T. Lindsey, J. Pokorny, and V. C. Smith, "Phase-dependent sensitivity to heterochromatic flicker," J. Opt. Soc. Am. A 3, 921-927 (1986).
[CrossRef] [PubMed]

V. C. Smith, R. W. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, "Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm," Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

Polden, P. G.

P. G. Polden and J. D. Mollon, "Reversed effect of adapting stimuli on visual sensitivity," Proc. R. Soc. London, Ser. B 19, 235-272 (1980).
[CrossRef]

Quick, R. F.

R. F. Quick, "A vector-magnitude model of contrast detection," Kybernetik 16, 65-67 (1974).
[CrossRef] [PubMed]

Rodriguez, C.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998).
[CrossRef] [PubMed]

Sankeralli, M. J.

Schafer, W.

R. M. Boynton, W. Schafer, and M. E. Neun, "Hue-wavelength relation measured by color-naming method for three retinal locations," Science 146, 666-668 (1964).
[CrossRef] [PubMed]

Smith, V. C.

E. Miyahara, J. Pokorny, and V. C. Smith, "Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers," Vision Res. 36, 1597-1613 (1996).
[CrossRef] [PubMed]

J. Pokorny and V. C. Smith, "Spectral-luminosity functions, scalar linearity, and chromatic adaptation," J. Opt. Soc. Am. A 10, 1304-1313 (1993).
[CrossRef] [PubMed]

D. T. Lindsey, J. Pokorny, and V. C. Smith, "Phase-dependent sensitivity to heterochromatic flicker," J. Opt. Soc. Am. A 3, 921-927 (1986).
[CrossRef] [PubMed]

V. C. Smith, R. W. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, "Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm," Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

Sperling, H. G.

H. G. Sperling and R. S. Harwerth, "Red-green cone interactions in the increment-threshold spectral sensitivity of primate," Science 9, 180-184 (1971).
[CrossRef]

Stromeyer, C. F.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, and R. E. Kronauer, "Second-site adaptation in red-green chromatic pathway," Vision Res. 25, 219-237 (1985).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, and G. R. Cole, "Adaptive mechanisms controlling sensitivity to red-green chromatic flashes," in Colour Vision, L.D.Mollon and L.T.Sharpe, eds. (Academic, 1983), pp. 313-330.

Tolhurst, D. J.

F. M. De Monasterio, P. Gouras, and D. J. Tolhurst, "Trichromatic colour opponency in ganglion cells of the rhesus monkey retina," J. Physiol. (London) 251, 197-216 (1975).

Wheeler, T. G.

T. G. Wheeler and K. I. Naka, "The modes of chromatic interactions in the retina," Vision Res. 17, 1015-1018 (1977).
[CrossRef] [PubMed]

Williams, D. R.

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space," Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

Wisowaty, J.

J. Wisowaty, "An action spectrum for the production of transient tritanopia," Vision Res. 23, 769-774 (1983).
[CrossRef] [PubMed]

Doc. Ophthalmol. (1)

D. L. MacAdam, "Color discrimination and the influence of color contrast on acuity," Doc. Ophthalmol. 3, 214-233 (1949).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (4)

J. Physiol. (London) (1)

F. M. De Monasterio, P. Gouras, and D. J. Tolhurst, "Trichromatic colour opponency in ganglion cells of the rhesus monkey retina," J. Physiol. (London) 251, 197-216 (1975).

Kybernetik (1)

R. F. Quick, "A vector-magnitude model of contrast detection," Kybernetik 16, 65-67 (1974).
[CrossRef] [PubMed]

Nature (1)

D. M. Dacey and B. B. Lee, "The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion cell type," Nature 24, 731-735 (1994).
[CrossRef]

Proc. R. Soc. London, Ser. B (1)

P. G. Polden and J. D. Mollon, "Reversed effect of adapting stimuli on visual sensitivity," Proc. R. Soc. London, Ser. B 19, 235-272 (1980).
[CrossRef]

Psychol. Rev. (1)

L. M. Hurvich and D. Jameson, "An opponent-process theory of color vision," Psychol. Rev. 64, 384-404 (1957).
[CrossRef] [PubMed]

Science (2)

H. G. Sperling and R. S. Harwerth, "Red-green cone interactions in the increment-threshold spectral sensitivity of primate," Science 9, 180-184 (1971).
[CrossRef]

R. M. Boynton, W. Schafer, and M. E. Neun, "Hue-wavelength relation measured by color-naming method for three retinal locations," Science 146, 666-668 (1964).
[CrossRef] [PubMed]

Vision Res. (13)

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998).
[CrossRef] [PubMed]

J. Wisowaty, "An action spectrum for the production of transient tritanopia," Vision Res. 23, 769-774 (1983).
[CrossRef] [PubMed]

J. S. McLellan and R. T. Eskew, Jr., "ON and OFF S-cone pathways have different long-wave cone inputs," Vision Res. 40, 2449-2465 (2000).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space," Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, and R. E. Kronauer, "Second-site adaptation in red-green chromatic pathway," Vision Res. 25, 219-237 (1985).
[CrossRef] [PubMed]

V. C. Smith, R. W. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984).
[CrossRef] [PubMed]

E. Miyahara, J. Pokorny, and V. C. Smith, "Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers," Vision Res. 36, 1597-1613 (1996).
[CrossRef] [PubMed]

T. G. Wheeler and K. I. Naka, "The modes of chromatic interactions in the retina," Vision Res. 17, 1015-1018 (1977).
[CrossRef] [PubMed]

L. Kerr, "Detection and identification of monochromatic stimuli under chromatic contrast," Vision Res. 14, 1095-1105 (1974).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, "Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm," Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

K. Kranda and P. E. King-Smith, "Detection of colored stimuli by independent linear systems," Vision Res. 19, 733-745 (1979).
[CrossRef] [PubMed]

W. Paulus and A. Kröger-Paulus, "A new concept of retinal color coding," Vision Res. 23, 529-540 (1983).
[CrossRef] [PubMed]

J. Larimer, "Opponent process additivity--I. red/green equilibria," Vision Res. 14, 1127-1140 (1974).
[CrossRef] [PubMed]

Other (1)

C. F. Stromeyer, R. E. Kronauer, and G. R. Cole, "Adaptive mechanisms controlling sensitivity to red-green chromatic flashes," in Colour Vision, L.D.Mollon and L.T.Sharpe, eds. (Academic, 1983), pp. 313-330.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectral sensitivity setup (xenon arc lamp and monochromator) mounted on an optical bench.

Fig. 2
Fig. 2

Increment spectral sensitivity curve obtained from each observer, with the computed sensitivity function using the least-squares-fit method to solve equation system (VI).

Fig. 3
Fig. 3

Graphic representation of the two mechanisms as described by Eqs. (I, II) and their contributions to the overall sensitivity represented by the model fit for two representative observers.

Fig. 4
Fig. 4

Transformation of the increment spectral sensitivity and the model fit data for the middle and longer wavelength zone ( 490 to 660 nm ) in normalized cone-contrast coordinates, where the L cones are weighted by a factor 1 K 1 = 0.73 , (red–green sensitivity = 0.73 L M ) for each observer.

Fig. 5
Fig. 5

Graphic representation, in the wavelength space, of the model fit sensitivity data along with the red–green mechanism sensitivity also represented in Fig. 4.

Fig. 6
Fig. 6

Spectral sensitivity mechanism involved in the detection of the 570 nm spectral test stimulus for each observer. This mechanism sensitivity was derived as a vector difference between the model fit and the red–green mechanism represented in Fig. 5.

Fig. 7
Fig. 7

Illustration for the mechanisms’ contribution to the overall sensitivity in conformity with the results presented in Table 3. The sensitivity is represented by the model fit as of vector addition from a hypothetical additive ( L + M ) achromatic system, with the antagonistic ( L M ) red–green chromatic mechanism and the blue–yellow chromatic system with S-cone interactions in a second antagonistic L- and M-cone mechanism. The mechanisms represented are obtained as a solution of the system of equations ( I 0 ) , (I, II) using the m parameters presented in Table 1.

Tables (3)

Tables Icon

Table 1 Value for m 1 , m 2 , m 3 , m 4 , m 5 , and m 6 Parameters Corresponding to Each Subject a

Tables Icon

Table 2 Chromatic Parameters a 1 , a 2 , b 1 , b 2 , and c Obtained as a Unique Solution of Equation System (V) Using the m Parameters Presented in Table 1

Tables Icon

Table 3 Example of Results for a 1 , a 2 , b 1 , b 2 , and c Chromatic Parameters a

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

S ( λ ) = [ S A ( λ ) n + S R G ( λ ) n + S B + Y ( λ ) n ] 1 n ,
red green chromatic system
S R G ( λ ) = a 1 L + b 1 M ,
blue yellow chromatic system
S B Y ( λ ) = a 2 L + b 2 M + c S .
S ( λ ) 2 = ( S R G ( λ ) 2 + S B Y ( λ ) 2 ) = ( a 1 L + b 1 M ) 2 + ( a 2 L + b 2 M + c S ) 2 .
S ( λ ) 2 = L 2 m 1 + M 2 m 2 + S 2 m 3 + 2 L M m 4 + 2 L S m 5 + 2 M S m 6 ,
m 1 = a 1 2 + a 2 2 L - cone sensitivity contribution ,
m 2 = b 1 2 + b 2 2 M - cone sensitivity contribution ,
m 3 = c 2 S - cone sensitivity contribution ,
m 4 = a 1 b 1 + a 2 b 2 L - and M - cone sensitivity interactions ,
m 5 = a 2 c L - and S - cone sensitivity interactions ,
m 6 = b 2 c M - and S - cone sensitivity interactions .
[ s 2 ( λ 1 ) s 2 ( λ 2 ) s 2 ( λ 3 ) s 2 ( λ n ) ] = [ L ( λ 1 ) 2 M ( λ 1 ) 2 S ( λ 1 ) 2 2 L ( λ 1 ) M 2 L ( λ 1 ) S ( λ 1 ) 2 M ( λ 1 ) S ( λ 1 ) L ( λ 2 ) 2 M ( λ 2 ) 2 S ( λ 2 ) 2 2 L ( λ 2 ) M 2 L ( λ 2 ) * S ( λ 2 ) 2 M ( λ 2 ) S ( λ 2 ) L ( λ 3 ) 2 M ( λ 3 ) 2 S ( λ 3 ) 2 2 L ( λ 3 ) M 2 L ( λ 3 ) * S ( λ 3 ) 2 M ( λ 3 ) S ( λ 3 ) L ( λ n ) 2 M ( λ n ) 2 S ( λ n ) 2 2 L ( λ n ) M 2 L ( λ n ) * S ( λ n ) 2 M ( λ n ) S ( λ n ) ] × [ m 1 m 2 m 3 m 4 m 5 m 6 ] .
m 1 = a 1 2 + a 2 2
m 2 = b 1 2 + b 2 2
m 3 = c 2
m 4 = a 1 b 1 + a 2 b 2
m 5 m 6 = a 2 b 2
A ( λ ) = a 0 L + b 0 M luminance mechanism , ( I 0 )
S R G ( λ ) = a 1 L + b 1 M red green chromatic system ,
S B Y ( λ ) = a 2 L + b 2 M + c S blue yellow chromatic system .
m 1 = a 1 2 + a 2 2 + a 0 2 L - cone sensitivity contribution ,
m 2 = b 1 2 + b 2 2 + b 0 2 M - cone sensitivity contribution ,
m 3 = c 2 S - cone sensitivity contribution ,
m 4 = a 1 b 1 + a 2 b 2 + a 0 b 0 L - and M - cone sensitivity interactions ,
m 5 = a 2 c L - and S - cone sensitivity interactions ,
m 6 = b 2 c M - and S - cone sensitivity interactions .
H = K C ( L , M , S ) Σ ( F C ( L , M , S ) ) ,
H ( R G ) = 7 L ( n + 1 ) L ( 6 n ) M = ( 6 n ) ( L M ) .
H ( L M ) S = 7 L ( n + 1 ) L ( 5 n ) M S = ( 6 n ) L ( 5 n ) M S ,
0 n 4 .

Metrics