Abstract

We correct a fundamental error occurring in the paper by F. Kahmann [J. Opt. Soc. Am. A 10, 1562 (1993)] leading to a different value for the parameter ϕp,0, i.e., the initial phase shift for the complex grating.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Kahmann, "Separate and simultaneous investigation of absorption gratings and refractive-index gratings by beam-coupling analysis," J. Opt. Soc. Am. A 10, 1562-1569 (1993).
    [CrossRef]
  2. H. Kogelnik, "Coupled wave theory for thick hologram gratings," AT&T Tech. J. 48, 2909-2947 (1969).
  3. E. Guibelalde, "Coupled wave analysis for out-of-phase mixed thick hologram gratings," Opt. Quantum Electron. 16, 173-178 (1984).
    [CrossRef]

1993

1984

E. Guibelalde, "Coupled wave analysis for out-of-phase mixed thick hologram gratings," Opt. Quantum Electron. 16, 173-178 (1984).
[CrossRef]

1969

H. Kogelnik, "Coupled wave theory for thick hologram gratings," AT&T Tech. J. 48, 2909-2947 (1969).

Guibelalde, E.

E. Guibelalde, "Coupled wave analysis for out-of-phase mixed thick hologram gratings," Opt. Quantum Electron. 16, 173-178 (1984).
[CrossRef]

Kahmann, F.

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," AT&T Tech. J. 48, 2909-2947 (1969).

AT&T Tech. J.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," AT&T Tech. J. 48, 2909-2947 (1969).

J. Opt. Soc. Am. A

Opt. Quantum Electron.

E. Guibelalde, "Coupled wave analysis for out-of-phase mixed thick hologram gratings," Opt. Quantum Electron. 16, 173-178 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Numerical example of beam coupling using the same parameters as in Fig. 5(b) of Ref. [1]. (b) Numerical example of beam coupling with dissimilar incoming electric-field amplitudes. Symbols denote the results of Kahmann ( I R , I S ) and the results of the present work ( I C 1 , I C 2 ) .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R ̂ 0 = e α d ̃ cos ν , S ̂ 0 = R ̂ 0 ,
R ̂ 1 = i e α d ̃ κ + κ sin ν ,
S ̂ 1 = i e α d ̃ κ κ + sin ν .
E C 1 = E R e i k R x = ( A R R ̂ 0 + A S S ̂ 1 e i ϕ p ) e i k R x ,
E C 2 = E S e i k S x = ( A S S ̂ 0 + A R R ̂ 1 e i ϕ p ) e i k S x .
ϕ p , 0 = 1 2 i ln [ ( b R i c R ) κ + ( b S + i c S ) κ ] ,

Metrics