Abstract

Butterfly scales generally have very elaborate structures in submicrometer size, and some of them show distinctive optical effects through interaction with light. We describe two methods to quantitatively characterize the optical properties of the individual scales in those structurally colored butterflies. Owing to the small dimensions of the scale and to the fact that the reflection and transmission are very diffuse, it is generally difficult to accurately measure the reflectance and transmittance. To overcome these difficulties, we have carefully constructed an optical system including an integrating sphere and investigated variously colored nine kinds of scale. It is shown that the obtained spectra clearly characterize the optical differences among those structurally colored scales and also the differences between structural and pigmentary colors. Further, we have performed the angle-resolved measurement of the reflected light to characterize the spatial pattern of reflection, which is closely related to the mechanism of reflection.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institution, 1991).
  2. T. F. Anderson and A. G. Richards, Jr., "An electron microscope study of some structural colors of insects," J. Appl. Phys. 13, 748-758 (1942).
    [CrossRef]
  3. W. Lippert and K. Gentil, "Über lamellare feinstrukturen bei den schillerschuppen der schmetterlinge vom Urania- und Morpho-typ," Z. Morphol. Oekol. Tiere 48, 115-122 (1959).
    [CrossRef]
  4. H. Ghiradella, "Light and color on the wing: structural colors in butterflies and moths," Appl. Opt. 30, 3492-3500 (1991).
    [CrossRef] [PubMed]
  5. H. Ghiradella, "Hairs, bristles, and scales," in Microscopic Anatomy of InvertebratesF.W.Harrison and M.Locke, eds. (Wiley-Liss, 1998), Vol. 11A: Insecta, pp. 257-287.
  6. A. Parker, "Light-reflection strategies," Am. Sci. 87, 248-255 (1999).
  7. A. Parker, "515 million years of structural colour," J. Opt. A, Pure Appl. Opt. 2, R15-R28 (2000).
    [CrossRef]
  8. M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds, and moths," Chem. Rev. (Washington, D.C.) 99, 1935-1961 (1999).
  9. P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
    [CrossRef] [PubMed]
  10. K. Iohara, M. Yoshimura, H. Tabata, and S. Shimizu, "Structurally colored fibers," Chem. Fibers Int. 50, 38-39 (2000).
  11. T.-H. Wong, M. C. Gupta, B. Robins, and T. L. Levendusky, "Color generation in butterfly wings and fabrication of such structures," Opt. Lett. 28, 2342-2344 (2003).
    [CrossRef] [PubMed]
  12. A. Saito, S. Yoshioka, and S. Kinoshita, "Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors," in Proc. SPIE 5526, 188-194 (2004).
    [CrossRef]
  13. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, "Brilliant blue observation from a Morpho-butterfly-scale quasi-structure," Jpn. J. Appl. Phys., Part 1 44, L48-L50 (2005).
    [CrossRef]
  14. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. London, Ser. B 266, 1403-1411 (1999).
    [CrossRef]
  15. P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Colour mixing in wing scales of a butterfly," Nature 404, 457 (2000).
    [CrossRef] [PubMed]
  16. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Limited-view iridescence in the butterfly Ancyluris meliboeus," Proc. R. Soc. London, Ser. B 269, 7-14 (2002).
    [CrossRef]
  17. S. Kinoshita, S. Yoshioka, and K. Kawagoe, "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale," Proc. R. Soc. London, Ser. B 269, 1417-1421 (2002).
    [CrossRef]
  18. S. Yoshioka and S. Kinoshita, "Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly," Proc. R. Soc. London, Ser. B 271, 581-587 (2004).
    [CrossRef]
  19. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, "Photophysics of structural color in the Morpho butterfly," Forma 17, 103-121 (2002).

2005 (1)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, "Brilliant blue observation from a Morpho-butterfly-scale quasi-structure," Jpn. J. Appl. Phys., Part 1 44, L48-L50 (2005).
[CrossRef]

2004 (2)

A. Saito, S. Yoshioka, and S. Kinoshita, "Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors," in Proc. SPIE 5526, 188-194 (2004).
[CrossRef]

S. Yoshioka and S. Kinoshita, "Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly," Proc. R. Soc. London, Ser. B 271, 581-587 (2004).
[CrossRef]

2003 (2)

2002 (3)

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, "Photophysics of structural color in the Morpho butterfly," Forma 17, 103-121 (2002).

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Limited-view iridescence in the butterfly Ancyluris meliboeus," Proc. R. Soc. London, Ser. B 269, 7-14 (2002).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale," Proc. R. Soc. London, Ser. B 269, 1417-1421 (2002).
[CrossRef]

2000 (2)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Colour mixing in wing scales of a butterfly," Nature 404, 457 (2000).
[CrossRef] [PubMed]

A. Parker, "515 million years of structural colour," J. Opt. A, Pure Appl. Opt. 2, R15-R28 (2000).
[CrossRef]

1999 (3)

M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds, and moths," Chem. Rev. (Washington, D.C.) 99, 1935-1961 (1999).

A. Parker, "Light-reflection strategies," Am. Sci. 87, 248-255 (1999).

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. London, Ser. B 266, 1403-1411 (1999).
[CrossRef]

1991 (1)

1959 (1)

W. Lippert and K. Gentil, "Über lamellare feinstrukturen bei den schillerschuppen der schmetterlinge vom Urania- und Morpho-typ," Z. Morphol. Oekol. Tiere 48, 115-122 (1959).
[CrossRef]

1942 (1)

T. F. Anderson and A. G. Richards, Jr., "An electron microscope study of some structural colors of insects," J. Appl. Phys. 13, 748-758 (1942).
[CrossRef]

Anderson, T. F.

T. F. Anderson and A. G. Richards, Jr., "An electron microscope study of some structural colors of insects," J. Appl. Phys. 13, 748-758 (1942).
[CrossRef]

Fujii, Y.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, "Photophysics of structural color in the Morpho butterfly," Forma 17, 103-121 (2002).

Gentil, K.

W. Lippert and K. Gentil, "Über lamellare feinstrukturen bei den schillerschuppen der schmetterlinge vom Urania- und Morpho-typ," Z. Morphol. Oekol. Tiere 48, 115-122 (1959).
[CrossRef]

Ghiradella, H.

H. Ghiradella, "Light and color on the wing: structural colors in butterflies and moths," Appl. Opt. 30, 3492-3500 (1991).
[CrossRef] [PubMed]

H. Ghiradella, "Hairs, bristles, and scales," in Microscopic Anatomy of InvertebratesF.W.Harrison and M.Locke, eds. (Wiley-Liss, 1998), Vol. 11A: Insecta, pp. 257-287.

Gupta, M. C.

Haruyama, Y.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, "Brilliant blue observation from a Morpho-butterfly-scale quasi-structure," Jpn. J. Appl. Phys., Part 1 44, L48-L50 (2005).
[CrossRef]

Hoshino, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, "Brilliant blue observation from a Morpho-butterfly-scale quasi-structure," Jpn. J. Appl. Phys., Part 1 44, L48-L50 (2005).
[CrossRef]

Iohara, K.

K. Iohara, M. Yoshimura, H. Tabata, and S. Shimizu, "Structurally colored fibers," Chem. Fibers Int. 50, 38-39 (2000).

Kanda, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, "Brilliant blue observation from a Morpho-butterfly-scale quasi-structure," Jpn. J. Appl. Phys., Part 1 44, L48-L50 (2005).
[CrossRef]

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale," Proc. R. Soc. London, Ser. B 269, 1417-1421 (2002).
[CrossRef]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, "Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly," Proc. R. Soc. London, Ser. B 271, 581-587 (2004).
[CrossRef]

A. Saito, S. Yoshioka, and S. Kinoshita, "Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors," in Proc. SPIE 5526, 188-194 (2004).
[CrossRef]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, "Photophysics of structural color in the Morpho butterfly," Forma 17, 103-121 (2002).

S. Kinoshita, S. Yoshioka, and K. Kawagoe, "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale," Proc. R. Soc. London, Ser. B 269, 1417-1421 (2002).
[CrossRef]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Limited-view iridescence in the butterfly Ancyluris meliboeus," Proc. R. Soc. London, Ser. B 269, 7-14 (2002).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Colour mixing in wing scales of a butterfly," Nature 404, 457 (2000).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. London, Ser. B 266, 1403-1411 (1999).
[CrossRef]

Levendusky, T. L.

Lippert, W.

W. Lippert and K. Gentil, "Über lamellare feinstrukturen bei den schillerschuppen der schmetterlinge vom Urania- und Morpho-typ," Z. Morphol. Oekol. Tiere 48, 115-122 (1959).
[CrossRef]

Matsui, S.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, "Brilliant blue observation from a Morpho-butterfly-scale quasi-structure," Jpn. J. Appl. Phys., Part 1 44, L48-L50 (2005).
[CrossRef]

Nijhout, H. F.

H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institution, 1991).

Okamoto, N.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, "Photophysics of structural color in the Morpho butterfly," Forma 17, 103-121 (2002).

Parker, A.

A. Parker, "515 million years of structural colour," J. Opt. A, Pure Appl. Opt. 2, R15-R28 (2000).
[CrossRef]

A. Parker, "Light-reflection strategies," Am. Sci. 87, 248-255 (1999).

Richards, A. G.

T. F. Anderson and A. G. Richards, Jr., "An electron microscope study of some structural colors of insects," J. Appl. Phys. 13, 748-758 (1942).
[CrossRef]

Robins, B.

Saito, A.

A. Saito, S. Yoshioka, and S. Kinoshita, "Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors," in Proc. SPIE 5526, 188-194 (2004).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Limited-view iridescence in the butterfly Ancyluris meliboeus," Proc. R. Soc. London, Ser. B 269, 7-14 (2002).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Colour mixing in wing scales of a butterfly," Nature 404, 457 (2000).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. London, Ser. B 266, 1403-1411 (1999).
[CrossRef]

Shimizu, S.

K. Iohara, M. Yoshimura, H. Tabata, and S. Shimizu, "Structurally colored fibers," Chem. Fibers Int. 50, 38-39 (2000).

Srinivasarao, M.

M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds, and moths," Chem. Rev. (Washington, D.C.) 99, 1935-1961 (1999).

Tabata, H.

K. Iohara, M. Yoshimura, H. Tabata, and S. Shimizu, "Structurally colored fibers," Chem. Fibers Int. 50, 38-39 (2000).

Vukusic, P.

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Limited-view iridescence in the butterfly Ancyluris meliboeus," Proc. R. Soc. London, Ser. B 269, 7-14 (2002).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Colour mixing in wing scales of a butterfly," Nature 404, 457 (2000).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. London, Ser. B 266, 1403-1411 (1999).
[CrossRef]

Watanabe, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, "Brilliant blue observation from a Morpho-butterfly-scale quasi-structure," Jpn. J. Appl. Phys., Part 1 44, L48-L50 (2005).
[CrossRef]

Wong, T.-H.

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Limited-view iridescence in the butterfly Ancyluris meliboeus," Proc. R. Soc. London, Ser. B 269, 7-14 (2002).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. London, Ser. B 266, 1403-1411 (1999).
[CrossRef]

Yoshimura, M.

K. Iohara, M. Yoshimura, H. Tabata, and S. Shimizu, "Structurally colored fibers," Chem. Fibers Int. 50, 38-39 (2000).

Yoshioka, S.

A. Saito, S. Yoshioka, and S. Kinoshita, "Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors," in Proc. SPIE 5526, 188-194 (2004).
[CrossRef]

S. Yoshioka and S. Kinoshita, "Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly," Proc. R. Soc. London, Ser. B 271, 581-587 (2004).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale," Proc. R. Soc. London, Ser. B 269, 1417-1421 (2002).
[CrossRef]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, "Photophysics of structural color in the Morpho butterfly," Forma 17, 103-121 (2002).

Am. Sci. (1)

A. Parker, "Light-reflection strategies," Am. Sci. 87, 248-255 (1999).

Appl. Opt. (1)

Chem. Rev. (Washington, D.C.) (1)

M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds, and moths," Chem. Rev. (Washington, D.C.) 99, 1935-1961 (1999).

Forma (1)

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, "Photophysics of structural color in the Morpho butterfly," Forma 17, 103-121 (2002).

J. Appl. Phys. (1)

T. F. Anderson and A. G. Richards, Jr., "An electron microscope study of some structural colors of insects," J. Appl. Phys. 13, 748-758 (1942).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. Parker, "515 million years of structural colour," J. Opt. A, Pure Appl. Opt. 2, R15-R28 (2000).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, "Brilliant blue observation from a Morpho-butterfly-scale quasi-structure," Jpn. J. Appl. Phys., Part 1 44, L48-L50 (2005).
[CrossRef]

Nature (2)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Colour mixing in wing scales of a butterfly," Nature 404, 457 (2000).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. R. Soc. London, Ser. B (4)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. London, Ser. B 266, 1403-1411 (1999).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Limited-view iridescence in the butterfly Ancyluris meliboeus," Proc. R. Soc. London, Ser. B 269, 7-14 (2002).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale," Proc. R. Soc. London, Ser. B 269, 1417-1421 (2002).
[CrossRef]

S. Yoshioka and S. Kinoshita, "Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly," Proc. R. Soc. London, Ser. B 271, 581-587 (2004).
[CrossRef]

Proc. SPIE (1)

A. Saito, S. Yoshioka, and S. Kinoshita, "Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors," in Proc. SPIE 5526, 188-194 (2004).
[CrossRef]

Z. Morphol. Oekol. Tiere (1)

W. Lippert and K. Gentil, "Über lamellare feinstrukturen bei den schillerschuppen der schmetterlinge vom Urania- und Morpho-typ," Z. Morphol. Oekol. Tiere 48, 115-122 (1959).
[CrossRef]

Other (3)

H. Ghiradella, "Hairs, bristles, and scales," in Microscopic Anatomy of InvertebratesF.W.Harrison and M.Locke, eds. (Wiley-Liss, 1998), Vol. 11A: Insecta, pp. 257-287.

K. Iohara, M. Yoshimura, H. Tabata, and S. Shimizu, "Structurally colored fibers," Chem. Fibers Int. 50, 38-39 (2000).

H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Smithsonian Institution, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sample butterflies and the positions where the scales were collected. (a) and (b) The dorsal and ventral sides of M. cypris, respectively. (c) The ventral side of the wing of U. ripheus and (d) the dorsal side of L. phlaeas.

Fig. 2
Fig. 2

Optical system for the measurement of (a) integrated reflectance and (b) transmittance from an individual scale.

Fig. 3
Fig. 3

Percentages of transmission through three pinholes placed at the sample position. The diameters of the pinholes are 100, 70, and 50 μ m from top to bottom. Owing the intensity fluctuation of the light source, some peaks exceed 100% for the 100 μ m pinhole.

Fig. 4
Fig. 4

Percentages of transmission, absorption, and reflection in different gray scales from the top to bottom for (a)–(e) the five kinds of scale of U. ripheus, for U1–U5, respectively, and (f) a scale of L. phlaeas, for L1. The incident light is nonpolarized.

Fig. 5
Fig. 5

Percentages of transmission, absorption, and reflection in different gray scales from the top to bottom for (a)–(c) the scales of M. cypris, for M1–M3. (d) and (e) Results when the scales are irradiated from the back for M1 and M2, respectively. The incident light is unpolarized.

Fig. 6
Fig. 6

Two-layer model to reproduce the dependence on the illumination direction of the scale M2 of M. cypris. (a) A schematic illustration of the model. Under the incidence of the light with the intensity of unity, the reflected and transmitted light intensities are expressed in terms of the reflectance R u ( R l ) and the transmittance T u ( T l ) of the upper (lower) layer. (b) and (c) Optical properties of the upper and the lower layers, respectively, are assumed as shown, where the three regions of the different gray scales show percentages of transmission, absorption, and reflection from the top to bottom. The optical absorption is absent in the upper layer. (d) and (e) Simulated results as discussed in Appendix B when the system is irradiated from the upper and from the lower layers, respectively.

Fig. 7
Fig. 7

Experimental setup for the angle-resolved measurement of the reflection spectrum.

Fig. 8
Fig. 8

Angular dependence of the reflection at several wavelengths. The sample M2 (a) in the plane perpendicular to the longer direction of the scale and (b) in the orthogonal plane. In (b), the scale is slightly tilted for the reflection band to be around 0°. (c) and (d) Results for the scale U1 in the same planes as in (a) and (b), respectively. The direction of the incident light is 0°.

Tables (1)

Tables Icon

Table 1 List of the Scales Investigated

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I d = I 0 ( R s S d + R s S in S d + R s S in S in S d + )
= I 0 R s S d 1 1 S in ,
I d = I 0 ( S d + ( S in + S ex ) S d + ( S in + S ex ) 2 S d + )
= I 0 S d 1 1 S in S ex .
R u l = R u + T u R l T u + T u R l R u R l T u +
= R u + T u 2 R l 1 R u R l ,
R l u = R l + T l R u T l + T l R u R l R u T l +
= R l + T l 2 R u 1 R u R l .
T = T u T l ( 1 + R u R l + R u 2 R l 2 + )
= T u T l 1 R u R l .
R u ( λ ) = 0.6 exp ( ( λ 450 ) 2 70 2 ) + 0.01 ( λ 350 ) 2 100 2 ,
T u ( λ ) = 1 R u ( λ ) ,
R l ( λ ) = 0.05 ,
T l ( λ ) = 0.05 + 0.7 ( λ 300 ) 2 600 2 .

Metrics