Abstract

Higher-order monochromatic aberrations in the human eye cause a difference in the appearance of stimuli at distances nearer and farther from best focus that could serve as a signed error signal for accommodation. We explored whether higher-order monochromatic aberrations affect the accommodative response to 0.5D step changes in vergence in experiments in which these aberrations were either present as they normally are or removed with adaptive optics. Of six subjects, one could not accommodate at all for steps in either condition. One subject clearly required higher-order aberrations to accommodate at all. The remaining four subjects could accommodate in the correct direction even when higher-order aberrations were removed. No subjects improved their accommodation when higher-order aberrations were corrected, indicating that the corresponding decrease in the depth of field of the eye did not improve the accommodative response. These results are consistent with previous findings of large individual differences in the ability to accommodate in impoverished conditions. These results suggest that at least some subjects can use monochromatic higher-order aberrations to guide accommodation. They also show that some subjects can accommodate correctly when higher-order monochromatic aberrations as well as established cues to accommodation are greatly reduced.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Toates, "Accommodation function of the human eye," Physiol. Rev. 52, 828-863 (1972).
    [PubMed]
  2. P. B. Kruger and J. Pola, "Stimuli for accommodation: blur, chromatic aberration and size," Vision Res. 26, 957-971 (1986).
    [CrossRef] [PubMed]
  3. F. W. Campbell and G. Westheimer, "Factors influencing accommodation responses of the human eye," J. Opt. Soc. Am. 49, 568-571 (1959).
    [CrossRef] [PubMed]
  4. G. G. Heath, "Components of accommodation," Am. J. Optom. Arch. Am. Acad. Optom. 33, 569-579 (1956).
    [PubMed]
  5. E. F. Fincham, "The accommodation reflex and its stimulus," Br. J. Ophthamol. 35, 381-393 (1951).
    [CrossRef]
  6. D. I. Flitcroft, "A neural and computational model for the chromatic control of accommodation," Visual Neurosci. 5, 547-555 (1990).
    [CrossRef]
  7. K. R. Aggarwala, S. Mathews, E. S. Kruger, and P. B. Kruger, "Spectral bandwidth and ocular accommodation," J. Opt. Soc. Am. A 12, 450-455 (1995).
    [CrossRef]
  8. J. C. Kotulak, S. E. Morse, and V. A. Billock, "Red-green opponent channel mediation of control of human ocular accommodation," J. Physiol. (London) 482, 697-703 (1995).
  9. P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
    [CrossRef] [PubMed]
  10. P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, "Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image," Vision Res. 35, 2415-2429 (1995).
    [PubMed]
  11. P. B. Kruger, S. Mathews, M. Katz, K. R. Aggarwala, and S. Nowbotsing, "Accommodation without feedback suggests directional signals specify ocular focus," Vision Res. 37, 2511-2526 (1997).
    [CrossRef] [PubMed]
  12. J. H. Lee, L. R. Stark, S. Cohen, and P. B. Kruger, "Accommodation to static chromatic simulations of blurred retinal images," Ophthalmic Physiol. Opt. 19, 223-235 (1999).
    [CrossRef]
  13. F. J. Rucker and P. B. Kruger, "Accommodation responses to stimuli in cone contrast space," Vision Res. 44, 2931-2994 (2004).
    [CrossRef] [PubMed]
  14. L. W. Stark and Y. Takahashi, "Absence of an odd-error signal mechanism in human accommodation," IEEE Trans. Biomed. Eng. BME-12, 138-146 (1965).
    [CrossRef]
  15. P. B. Kruger, L. R. Stark, and H. N. Nguyen, "Small foveal targets for studies of accommodation and the Stiles-Crawford effect," Vision Res. 44, 2757-2767 (2004).
    [CrossRef] [PubMed]
  16. M. J. Allen, "The stimulus to accommodation," Am. J. Optom. Arch. Am. Acad. Optom. 32, 422-431 (1955).
    [PubMed]
  17. G. Walsh and W. N. Charman, "Visual sensitivity to temporal change in focus and its relevance to the accommodation response," Vision Res. 28, 1207-1221 (1988).
    [CrossRef] [PubMed]
  18. B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction," J. Opt. Soc. Am. A 19, 833-839 (2002).
    [CrossRef]
  19. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 1-9 (2002).
    [CrossRef]
  20. Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, "Spherical and irregular aberrations are important for the optimal performance of the human eye," Ophthalmic Physiol. Opt. 22, 103-112 (2002).
    [CrossRef] [PubMed]
  21. P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
    [CrossRef]
  22. X. Cheng, A. Bradley, and L. N. Thibos, "Predicting subjective judgment of best focus with objective image quality metrics," J. Vision 4, 310-321 (2004).
    [CrossRef]
  23. H. Hofer, L. Chen, G. Y. Yoon, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye's aberration," Opt. Express 8, 631-643 (2001).
    [CrossRef] [PubMed]
  24. S. Phillips, D. Shirachi, and L. Stark, "Analysis of accommodative response times using histogram information," Am. J. Optom. Physiol. Opt. 49, 389-400 (1972).
  25. F. W. Campbell and G. Westheimer, "Dynamics of accommodation responses of the human eye," J. Physiol. (London) 151, 285-295 (1960).
  26. F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. (London) 145, 579-594 (1959).
  27. W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
    [CrossRef] [PubMed]
  28. E. J. Fernandez and P. Artal, "Adaptive-optics correction of asymmetric aberrations degrades accommodation," Invest. Ophthalmol. Visual Sci. 43, 954 (2002).
  29. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye's wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
    [CrossRef]
  30. R. A. Applegate, C. S. Ballentine, and A. Roorda, "Is a bite-bar needed for Shack-Hartmann wavefront sensing?" Invest. Ophthalmol. Visual Sci. 42, S604 (2001).
  31. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, "Test-retest reliability of clinical Shack-Hartmann measurements," Invest. Ophthalmol. Visual Sci. 45, 351-360 (2004).
    [CrossRef]
  32. M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
    [CrossRef] [PubMed]
  33. P. B. Kruger, N. Lopez-Gil, and L. R. Stark, "Accommodation and the Stiles-Crawford effect: Case study and theoretical aspects," Ophthalmic Physiol. Opt. 21, 338-350 (2001).
    [CrossRef]

2004

F. J. Rucker and P. B. Kruger, "Accommodation responses to stimuli in cone contrast space," Vision Res. 44, 2931-2994 (2004).
[CrossRef] [PubMed]

P. B. Kruger, L. R. Stark, and H. N. Nguyen, "Small foveal targets for studies of accommodation and the Stiles-Crawford effect," Vision Res. 44, 2757-2767 (2004).
[CrossRef] [PubMed]

P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, "Predicting subjective judgment of best focus with objective image quality metrics," J. Vision 4, 310-321 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, "Test-retest reliability of clinical Shack-Hartmann measurements," Invest. Ophthalmol. Visual Sci. 45, 351-360 (2004).
[CrossRef]

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

2002

B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction," J. Opt. Soc. Am. A 19, 833-839 (2002).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 1-9 (2002).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, "Spherical and irregular aberrations are important for the optimal performance of the human eye," Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

E. J. Fernandez and P. Artal, "Adaptive-optics correction of asymmetric aberrations degrades accommodation," Invest. Ophthalmol. Visual Sci. 43, 954 (2002).

2001

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye's wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

R. A. Applegate, C. S. Ballentine, and A. Roorda, "Is a bite-bar needed for Shack-Hartmann wavefront sensing?" Invest. Ophthalmol. Visual Sci. 42, S604 (2001).

H. Hofer, L. Chen, G. Y. Yoon, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye's aberration," Opt. Express 8, 631-643 (2001).
[CrossRef] [PubMed]

P. B. Kruger, N. Lopez-Gil, and L. R. Stark, "Accommodation and the Stiles-Crawford effect: Case study and theoretical aspects," Ophthalmic Physiol. Opt. 21, 338-350 (2001).
[CrossRef]

1999

J. H. Lee, L. R. Stark, S. Cohen, and P. B. Kruger, "Accommodation to static chromatic simulations of blurred retinal images," Ophthalmic Physiol. Opt. 19, 223-235 (1999).
[CrossRef]

1997

P. B. Kruger, S. Mathews, M. Katz, K. R. Aggarwala, and S. Nowbotsing, "Accommodation without feedback suggests directional signals specify ocular focus," Vision Res. 37, 2511-2526 (1997).
[CrossRef] [PubMed]

1995

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, "Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image," Vision Res. 35, 2415-2429 (1995).
[PubMed]

K. R. Aggarwala, S. Mathews, E. S. Kruger, and P. B. Kruger, "Spectral bandwidth and ocular accommodation," J. Opt. Soc. Am. A 12, 450-455 (1995).
[CrossRef]

J. C. Kotulak, S. E. Morse, and V. A. Billock, "Red-green opponent channel mediation of control of human ocular accommodation," J. Physiol. (London) 482, 697-703 (1995).

1993

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

1990

D. I. Flitcroft, "A neural and computational model for the chromatic control of accommodation," Visual Neurosci. 5, 547-555 (1990).
[CrossRef]

1988

G. Walsh and W. N. Charman, "Visual sensitivity to temporal change in focus and its relevance to the accommodation response," Vision Res. 28, 1207-1221 (1988).
[CrossRef] [PubMed]

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

1986

P. B. Kruger and J. Pola, "Stimuli for accommodation: blur, chromatic aberration and size," Vision Res. 26, 957-971 (1986).
[CrossRef] [PubMed]

1972

F. M. Toates, "Accommodation function of the human eye," Physiol. Rev. 52, 828-863 (1972).
[PubMed]

S. Phillips, D. Shirachi, and L. Stark, "Analysis of accommodative response times using histogram information," Am. J. Optom. Physiol. Opt. 49, 389-400 (1972).

1965

L. W. Stark and Y. Takahashi, "Absence of an odd-error signal mechanism in human accommodation," IEEE Trans. Biomed. Eng. BME-12, 138-146 (1965).
[CrossRef]

1960

F. W. Campbell and G. Westheimer, "Dynamics of accommodation responses of the human eye," J. Physiol. (London) 151, 285-295 (1960).

1959

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. (London) 145, 579-594 (1959).

F. W. Campbell and G. Westheimer, "Factors influencing accommodation responses of the human eye," J. Opt. Soc. Am. 49, 568-571 (1959).
[CrossRef] [PubMed]

1956

G. G. Heath, "Components of accommodation," Am. J. Optom. Arch. Am. Acad. Optom. 33, 569-579 (1956).
[PubMed]

1955

M. J. Allen, "The stimulus to accommodation," Am. J. Optom. Arch. Am. Acad. Optom. 32, 422-431 (1955).
[PubMed]

1951

E. F. Fincham, "The accommodation reflex and its stimulus," Br. J. Ophthamol. 35, 381-393 (1951).
[CrossRef]

Aggarwala, K. R.

P. B. Kruger, S. Mathews, M. Katz, K. R. Aggarwala, and S. Nowbotsing, "Accommodation without feedback suggests directional signals specify ocular focus," Vision Res. 37, 2511-2526 (1997).
[CrossRef] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, "Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image," Vision Res. 35, 2415-2429 (1995).
[PubMed]

K. R. Aggarwala, S. Mathews, E. S. Kruger, and P. B. Kruger, "Spectral bandwidth and ocular accommodation," J. Opt. Soc. Am. A 12, 450-455 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Allen, M. J.

M. J. Allen, "The stimulus to accommodation," Am. J. Optom. Arch. Am. Acad. Optom. 32, 422-431 (1955).
[PubMed]

Applegate, R. A.

R. A. Applegate, C. S. Ballentine, and A. Roorda, "Is a bite-bar needed for Shack-Hartmann wavefront sensing?" Invest. Ophthalmol. Visual Sci. 42, S604 (2001).

Aragón, J. L.

Artal, P.

P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

E. J. Fernandez and P. Artal, "Adaptive-optics correction of asymmetric aberrations degrades accommodation," Invest. Ophthalmol. Visual Sci. 43, 954 (2002).

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye's wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

Ballentine, C. S.

R. A. Applegate, C. S. Ballentine, and A. Roorda, "Is a bite-bar needed for Shack-Hartmann wavefront sensing?" Invest. Ophthalmol. Visual Sci. 42, S604 (2001).

Billock, V. A.

J. C. Kotulak, S. E. Morse, and V. A. Billock, "Red-green opponent channel mediation of control of human ocular accommodation," J. Physiol. (London) 482, 697-703 (1995).

Bradley, A.

X. Cheng, A. Bradley, and L. N. Thibos, "Predicting subjective judgment of best focus with objective image quality metrics," J. Vision 4, 310-321 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, "Test-retest reliability of clinical Shack-Hartmann measurements," Invest. Ophthalmol. Visual Sci. 45, 351-360 (2004).
[CrossRef]

Campbell, F. W.

F. W. Campbell and G. Westheimer, "Dynamics of accommodation responses of the human eye," J. Physiol. (London) 151, 285-295 (1960).

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. (London) 145, 579-594 (1959).

F. W. Campbell and G. Westheimer, "Factors influencing accommodation responses of the human eye," J. Opt. Soc. Am. 49, 568-571 (1959).
[CrossRef] [PubMed]

Charman, W. N.

G. Walsh and W. N. Charman, "Visual sensitivity to temporal change in focus and its relevance to the accommodation response," Vision Res. 28, 1207-1221 (1988).
[CrossRef] [PubMed]

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

Chen, L.

Cheng, X.

X. Cheng, A. Bradley, and L. N. Thibos, "Predicting subjective judgment of best focus with objective image quality metrics," J. Vision 4, 310-321 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, "Test-retest reliability of clinical Shack-Hartmann measurements," Invest. Ophthalmol. Visual Sci. 45, 351-360 (2004).
[CrossRef]

Cohen, S.

J. H. Lee, L. R. Stark, S. Cohen, and P. B. Kruger, "Accommodation to static chromatic simulations of blurred retinal images," Ophthalmic Physiol. Opt. 19, 223-235 (1999).
[CrossRef]

Collins, M. J.

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

Cox, I. G.

Decker, K. E.

Fernandez, E. J.

E. J. Fernandez and P. Artal, "Adaptive-optics correction of asymmetric aberrations degrades accommodation," Invest. Ophthalmol. Visual Sci. 43, 954 (2002).

Fernández, E. J.

P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

Fidler, V.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, "Spherical and irregular aberrations are important for the optimal performance of the human eye," Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Fincham, E. F.

E. F. Fincham, "The accommodation reflex and its stimulus," Br. J. Ophthamol. 35, 381-393 (1951).
[CrossRef]

Flitcroft, D. I.

D. I. Flitcroft, "A neural and computational model for the chromatic control of accommodation," Visual Neurosci. 5, 547-555 (1990).
[CrossRef]

Geraghty, E.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, "Spherical and irregular aberrations are important for the optimal performance of the human eye," Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Guirao, A.

Heath, G. G.

G. G. Heath, "Components of accommodation," Am. J. Optom. Arch. Am. Acad. Optom. 33, 569-579 (1956).
[PubMed]

Heron, G.

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

Himebaugh, N. L.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, "Test-retest reliability of clinical Shack-Hartmann measurements," Invest. Ophthalmol. Visual Sci. 45, 351-360 (2004).
[CrossRef]

Hofer, H.

Iskander, D. R.

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

Jansonius, N. M.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, "Spherical and irregular aberrations are important for the optimal performance of the human eye," Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Katz, M.

P. B. Kruger, S. Mathews, M. Katz, K. R. Aggarwala, and S. Nowbotsing, "Accommodation without feedback suggests directional signals specify ocular focus," Vision Res. 37, 2511-2526 (1997).
[CrossRef] [PubMed]

Kollbaum, P. S.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, "Test-retest reliability of clinical Shack-Hartmann measurements," Invest. Ophthalmol. Visual Sci. 45, 351-360 (2004).
[CrossRef]

Kooijman, A. C.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, "Spherical and irregular aberrations are important for the optimal performance of the human eye," Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Kotulak, J. C.

J. C. Kotulak, S. E. Morse, and V. A. Billock, "Red-green opponent channel mediation of control of human ocular accommodation," J. Physiol. (London) 482, 697-703 (1995).

Kruger, E. S.

K. R. Aggarwala, S. Mathews, E. S. Kruger, and P. B. Kruger, "Spectral bandwidth and ocular accommodation," J. Opt. Soc. Am. A 12, 450-455 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, "Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image," Vision Res. 35, 2415-2429 (1995).
[PubMed]

Kruger, P. B.

F. J. Rucker and P. B. Kruger, "Accommodation responses to stimuli in cone contrast space," Vision Res. 44, 2931-2994 (2004).
[CrossRef] [PubMed]

P. B. Kruger, L. R. Stark, and H. N. Nguyen, "Small foveal targets for studies of accommodation and the Stiles-Crawford effect," Vision Res. 44, 2757-2767 (2004).
[CrossRef] [PubMed]

P. B. Kruger, N. Lopez-Gil, and L. R. Stark, "Accommodation and the Stiles-Crawford effect: Case study and theoretical aspects," Ophthalmic Physiol. Opt. 21, 338-350 (2001).
[CrossRef]

J. H. Lee, L. R. Stark, S. Cohen, and P. B. Kruger, "Accommodation to static chromatic simulations of blurred retinal images," Ophthalmic Physiol. Opt. 19, 223-235 (1999).
[CrossRef]

P. B. Kruger, S. Mathews, M. Katz, K. R. Aggarwala, and S. Nowbotsing, "Accommodation without feedback suggests directional signals specify ocular focus," Vision Res. 37, 2511-2526 (1997).
[CrossRef] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, "Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image," Vision Res. 35, 2415-2429 (1995).
[PubMed]

K. R. Aggarwala, S. Mathews, E. S. Kruger, and P. B. Kruger, "Spectral bandwidth and ocular accommodation," J. Opt. Soc. Am. A 12, 450-455 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

P. B. Kruger and J. Pola, "Stimuli for accommodation: blur, chromatic aberration and size," Vision Res. 26, 957-971 (1986).
[CrossRef] [PubMed]

Lee, J. H.

J. H. Lee, L. R. Stark, S. Cohen, and P. B. Kruger, "Accommodation to static chromatic simulations of blurred retinal images," Ophthalmic Physiol. Opt. 19, 223-235 (1999).
[CrossRef]

Lopez-Gil, N.

P. B. Kruger, N. Lopez-Gil, and L. R. Stark, "Accommodation and the Stiles-Crawford effect: Case study and theoretical aspects," Ophthalmic Physiol. Opt. 21, 338-350 (2001).
[CrossRef]

Manzanera, S.

P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

Mathews, S.

P. B. Kruger, S. Mathews, M. Katz, K. R. Aggarwala, and S. Nowbotsing, "Accommodation without feedback suggests directional signals specify ocular focus," Vision Res. 37, 2511-2526 (1997).
[CrossRef] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, "Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image," Vision Res. 35, 2415-2429 (1995).
[PubMed]

K. R. Aggarwala, S. Mathews, E. S. Kruger, and P. B. Kruger, "Spectral bandwidth and ocular accommodation," J. Opt. Soc. Am. A 12, 450-455 (1995).
[CrossRef]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Morse, S. E.

J. C. Kotulak, S. E. Morse, and V. A. Billock, "Red-green opponent channel mediation of control of human ocular accommodation," J. Physiol. (London) 482, 697-703 (1995).

Nguyen, H. N.

P. B. Kruger, L. R. Stark, and H. N. Nguyen, "Small foveal targets for studies of accommodation and the Stiles-Crawford effect," Vision Res. 44, 2757-2767 (2004).
[CrossRef] [PubMed]

Nio, Y. K.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, "Spherical and irregular aberrations are important for the optimal performance of the human eye," Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Norrby, S.

P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, "Spherical and irregular aberrations are important for the optimal performance of the human eye," Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Nowbotsing, S.

P. B. Kruger, S. Mathews, M. Katz, K. R. Aggarwala, and S. Nowbotsing, "Accommodation without feedback suggests directional signals specify ocular focus," Vision Res. 37, 2511-2526 (1997).
[CrossRef] [PubMed]

Phillips, S.

S. Phillips, D. Shirachi, and L. Stark, "Analysis of accommodative response times using histogram information," Am. J. Optom. Physiol. Opt. 49, 389-400 (1972).

Piers, P. A.

P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

Pola, J.

P. B. Kruger and J. Pola, "Stimuli for accommodation: blur, chromatic aberration and size," Vision Res. 26, 957-971 (1986).
[CrossRef] [PubMed]

Porter, J.

Robson, J. G.

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. (London) 145, 579-594 (1959).

Roorda, A.

B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction," J. Opt. Soc. Am. A 19, 833-839 (2002).
[CrossRef]

R. A. Applegate, C. S. Ballentine, and A. Roorda, "Is a bite-bar needed for Shack-Hartmann wavefront sensing?" Invest. Ophthalmol. Visual Sci. 42, S604 (2001).

Rucker, F. J.

F. J. Rucker and P. B. Kruger, "Accommodation responses to stimuli in cone contrast space," Vision Res. 44, 2931-2994 (2004).
[CrossRef] [PubMed]

Sanchez, N.

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Shirachi, D.

S. Phillips, D. Shirachi, and L. Stark, "Analysis of accommodative response times using histogram information," Am. J. Optom. Physiol. Opt. 49, 389-400 (1972).

Singer, B.

Stark, L.

S. Phillips, D. Shirachi, and L. Stark, "Analysis of accommodative response times using histogram information," Am. J. Optom. Physiol. Opt. 49, 389-400 (1972).

Stark, L. R.

P. B. Kruger, L. R. Stark, and H. N. Nguyen, "Small foveal targets for studies of accommodation and the Stiles-Crawford effect," Vision Res. 44, 2757-2767 (2004).
[CrossRef] [PubMed]

P. B. Kruger, N. Lopez-Gil, and L. R. Stark, "Accommodation and the Stiles-Crawford effect: Case study and theoretical aspects," Ophthalmic Physiol. Opt. 21, 338-350 (2001).
[CrossRef]

J. H. Lee, L. R. Stark, S. Cohen, and P. B. Kruger, "Accommodation to static chromatic simulations of blurred retinal images," Ophthalmic Physiol. Opt. 19, 223-235 (1999).
[CrossRef]

Stark, L. W.

L. W. Stark and Y. Takahashi, "Absence of an odd-error signal mechanism in human accommodation," IEEE Trans. Biomed. Eng. BME-12, 138-146 (1965).
[CrossRef]

Takahashi, Y.

L. W. Stark and Y. Takahashi, "Absence of an odd-error signal mechanism in human accommodation," IEEE Trans. Biomed. Eng. BME-12, 138-146 (1965).
[CrossRef]

Thibos, L. N.

X. Cheng, A. Bradley, and L. N. Thibos, "Predicting subjective judgment of best focus with objective image quality metrics," J. Vision 4, 310-321 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, "Test-retest reliability of clinical Shack-Hartmann measurements," Invest. Ophthalmol. Visual Sci. 45, 351-360 (2004).
[CrossRef]

Toates, F. M.

F. M. Toates, "Accommodation function of the human eye," Physiol. Rev. 52, 828-863 (1972).
[PubMed]

Walsh, G.

G. Walsh and W. N. Charman, "Visual sensitivity to temporal change in focus and its relevance to the accommodation response," Vision Res. 28, 1207-1221 (1988).
[CrossRef] [PubMed]

Westheimer, G.

F. W. Campbell and G. Westheimer, "Dynamics of accommodation responses of the human eye," J. Physiol. (London) 151, 285-295 (1960).

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. (London) 145, 579-594 (1959).

F. W. Campbell and G. Westheimer, "Factors influencing accommodation responses of the human eye," J. Opt. Soc. Am. 49, 568-571 (1959).
[CrossRef] [PubMed]

Williams, D. R.

Wilson, B. J.

Yager, D.

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, "Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image," Vision Res. 35, 2415-2429 (1995).
[PubMed]

Yamauchi, Y.

Yoon, G. Y.

Zhu, M.

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

Am. J. Optom. Arch. Am. Acad. Optom.

G. G. Heath, "Components of accommodation," Am. J. Optom. Arch. Am. Acad. Optom. 33, 569-579 (1956).
[PubMed]

M. J. Allen, "The stimulus to accommodation," Am. J. Optom. Arch. Am. Acad. Optom. 32, 422-431 (1955).
[PubMed]

Am. J. Optom. Physiol. Opt.

S. Phillips, D. Shirachi, and L. Stark, "Analysis of accommodative response times using histogram information," Am. J. Optom. Physiol. Opt. 49, 389-400 (1972).

Br. J. Ophthamol.

E. F. Fincham, "The accommodation reflex and its stimulus," Br. J. Ophthamol. 35, 381-393 (1951).
[CrossRef]

IEEE Trans. Biomed. Eng.

L. W. Stark and Y. Takahashi, "Absence of an odd-error signal mechanism in human accommodation," IEEE Trans. Biomed. Eng. BME-12, 138-146 (1965).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

E. J. Fernandez and P. Artal, "Adaptive-optics correction of asymmetric aberrations degrades accommodation," Invest. Ophthalmol. Visual Sci. 43, 954 (2002).

R. A. Applegate, C. S. Ballentine, and A. Roorda, "Is a bite-bar needed for Shack-Hartmann wavefront sensing?" Invest. Ophthalmol. Visual Sci. 42, S604 (2001).

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, "Test-retest reliability of clinical Shack-Hartmann measurements," Invest. Ophthalmol. Visual Sci. 45, 351-360 (2004).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol. (London)

J. C. Kotulak, S. E. Morse, and V. A. Billock, "Red-green opponent channel mediation of control of human ocular accommodation," J. Physiol. (London) 482, 697-703 (1995).

F. W. Campbell and G. Westheimer, "Dynamics of accommodation responses of the human eye," J. Physiol. (London) 151, 285-295 (1960).

F. W. Campbell, J. G. Robson, and G. Westheimer, "Fluctuations of accommodation under steady viewing conditions," J. Physiol. (London) 145, 579-594 (1959).

J. Vision

X. Cheng, A. Bradley, and L. N. Thibos, "Predicting subjective judgment of best focus with objective image quality metrics," J. Vision 4, 310-321 (2004).
[CrossRef]

Ophthalmic Physiol. Opt.

W. N. Charman and G. Heron, "Fluctuations in accommodation: a review," Ophthalmic Physiol. Opt. 8, 153-164 (1988).
[CrossRef] [PubMed]

M. Zhu, M. J. Collins, and D. R. Iskander, "Microfluctuations of wavefront aberrations of the eye," Ophthalmic Physiol. Opt. 24, 562-571 (2004).
[CrossRef] [PubMed]

P. B. Kruger, N. Lopez-Gil, and L. R. Stark, "Accommodation and the Stiles-Crawford effect: Case study and theoretical aspects," Ophthalmic Physiol. Opt. 21, 338-350 (2001).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, "Spherical and irregular aberrations are important for the optimal performance of the human eye," Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

J. H. Lee, L. R. Stark, S. Cohen, and P. B. Kruger, "Accommodation to static chromatic simulations of blurred retinal images," Ophthalmic Physiol. Opt. 19, 223-235 (1999).
[CrossRef]

Opt. Express

Physiol. Rev.

F. M. Toates, "Accommodation function of the human eye," Physiol. Rev. 52, 828-863 (1972).
[PubMed]

Vision Res.

P. B. Kruger and J. Pola, "Stimuli for accommodation: blur, chromatic aberration and size," Vision Res. 26, 957-971 (1986).
[CrossRef] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, "Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image," Vision Res. 35, 2415-2429 (1995).
[PubMed]

P. B. Kruger, S. Mathews, M. Katz, K. R. Aggarwala, and S. Nowbotsing, "Accommodation without feedback suggests directional signals specify ocular focus," Vision Res. 37, 2511-2526 (1997).
[CrossRef] [PubMed]

F. J. Rucker and P. B. Kruger, "Accommodation responses to stimuli in cone contrast space," Vision Res. 44, 2931-2994 (2004).
[CrossRef] [PubMed]

P. B. Kruger, L. R. Stark, and H. N. Nguyen, "Small foveal targets for studies of accommodation and the Stiles-Crawford effect," Vision Res. 44, 2757-2767 (2004).
[CrossRef] [PubMed]

G. Walsh and W. N. Charman, "Visual sensitivity to temporal change in focus and its relevance to the accommodation response," Vision Res. 28, 1207-1221 (1988).
[CrossRef] [PubMed]

Visual Neurosci.

D. I. Flitcroft, "A neural and computational model for the chromatic control of accommodation," Visual Neurosci. 5, 547-555 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the adaptive optics system for the accommodation experiment. The black path is used to deliver the stimulus image from the projector to the eye. The gray path, overlapped by the black path from the beam splitter (BS) before the eye to the cold mirror, represents the infrared light used for the wave aberration measurement and correction.

Fig. 2
Fig. 2

Accommodation data processing procedure: (a) accommodation measurement with Shack–Hartmann wavefront sensor, (b) the deformable mirror changes in step of defocus measured by wavefront sensor, (c) accommodation response of subject.

Fig. 3
Fig. 3

RMS wavefront error of higher-order aberrations with a 6 mm pupil from six subjects before correction and after correction.

Fig. 4
Fig. 4

One subject (AP) could not accommodate at all for steps in either direction. In this figure the dashed curve is the ideal response of accommodation for a 0.5 D step defocus. The solid curve is the accommodation response when higher-order aberrations were presented to the eye, and the dotted-dashed curve is the accommodation response when higher-order aberrations were removed from the eye by AO. (a) Accommodation to far step. (b) Accommodation to near step.

Fig. 5
Fig. 5

One subject (LF) could not accommodate without higher-order aberrations (shown as dotted-dashed curve), but could accommodate with higher-order aberrations (shown as solid curve). (a) Accommodation to far step. (b) Accommodation to near step.

Fig. 6
Fig. 6

One subject (JP) could accommodate in the correct direction even when higher-order aberrations were removed. Curves as designated for Fig. 4. (a) Accommodation to far step. (b) Accommodation to near step.

Fig. 7
Fig. 7

Accommodation response gain with and without higher-order aberration, for four subjects.

Fig. 8
Fig. 8

Accommodation response time with and without higher-order aberration, for four subjects.

Fig. 9
Fig. 9

Decrease in depth of focus when higher-order aberrations are completely corrected. Pupil size was 6 mm . The dashed curve plots the Strehl ratio for an eye suffering only from diffraction and various amounts of defocus. The solid curve is the mean Strehl ratio as a function of defocus calculated from the higher-order aberrations measured with a Shack–Hartmann wavefront sensor in 13 eyes. Different amounts of defocus generate the highest Strehl ratio in different eyes due to the influence of higher-order aberrations, especially spherical aberration. Therefore, we moved each subject’s curve along the x axis so that the center of mass lay at 0 D prior to averaging. Higher-order aberrations broaden the curve compared to the diffraction-limited case, resulting in better image quality when the eye is defocused by more than 0.1 D . Similar calculations on the smaller number of subjects used in this study produced similar results.

Fig. 10
Fig. 10

Near and far steps produce quite different point spread functions at 550 nm wavelength with residual aberrations (subject JP); each image corresponds to 1 deg visual angle on a side.

Metrics