Abstract

We propose a method to isolate absorption trends confined to the lower layer of a two-layer turbid medium, as is desired in near-infrared spectroscopy (NIRS) of cerebral hemodynamics. Several two-layer Monte Carlo simulations of NIRS time series were generated using a physiologically relevant range of optical properties and varying the absorption coefficients due to bottom-layer, top-layer, and/or global fluctuations. Initial results showed that by measuring absorption trends at two source–detector separations and performing a least-squares fit of one to the other, processed signals strongly resemble the simulated bottom-layer absorption properties. Through this approach, it was demonstrated that fitting coefficients can be estimated within less than ±2% of the ideal value without any a priori knowledge of the optical properties present in the model. An analytical approximation for the least-squares coefficient provides physical insight into the nature of errors and suggests ways to reduce them.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging

Vladislav Toronov, Andrew Webb, Jee Hyun Choi, Martin Wolf, Larisa Safonova, Ursula Wolf, and Enrico Gratton
Opt. Express 9(8) 417-427 (2001)

Study of photon migration with various source-detector separations in near-infrared spectroscopic brain imaging based on three-dimensional Monte Carlo modeling

Cheng-Kuang Lee, Chia-Wei Sun, Po-Lei Lee, Hsiang-Chieh Lee, C. C. Yang, Cho-Pei Jiang, Yuh-Ping Tong, Tzu-Chen Yeh, and Jen-Chuen Hsieh
Opt. Express 13(21) 8339-8348 (2005)

Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging

Danny K. Joseph, Theodore J. Huppert, Maria Angela Franceschini, and David A. Boas
Appl. Opt. 45(31) 8142-8151 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription